Сравнить полупроводниковые диод и транзистор. Полупроводниковые приборы - виды, обзор и использование

  • 24.06.2023

Полупроводниковым диодом называется двухэлектродный прибор, обладающий односторонней проводимостью. В основе его конструкции лежит равновесный р -n переход. По характеру образования перехода диоды делятся на точечные и плоскостные.

Для преобразования, усиления и генерирования электрических колебаний широкое применение нашли полупроводниковые триоды – транзисторы . Для работы транзистора необходимо иметь два электронно-дырочных перехода, в качестве полупроводника часто используется германий.

В транзисторах, использующих n-р-n переход, полупроводник р -типанаходится между полупроводниками n -типа, Устройство плоскостного биполярного транзистора показано на рисунке 2.7.


Рис. 2.7. Принцип устройства транзистора и изображение транзисторов на схемах.

В данном транзисторе n-р-n типа имеется средняя область с дырочной проводимостью, и две крайние области с электронной проводимостью. Средняя область транзистора называется - базой , одна крайняя область – эмиттером, другая –коллектором. Таким образом, в транзисторе имеется два n-р перехода: эмиттерный – между эмиттером и базой и коллекторный - между базой и коллектором. Расстояние между ними должно быть очень малым, не более единиц микрометров, т.е. область базы должна быть очень тонкой. Это является условием для хорошей работы транзистора. Кроме того, концентрация примесей в базе всегда значительно меньше, чем в коллекторе и эмиттере. На схематических изображениях транзисторов стрелка показывает направление тока (условное, от плюса к минусу) в проводе эмиттера при прямом напряжении на эмиттерном переходе.

Рассмотрим работу транзистора в режиме без нагрузки, когда включены только источники постоянных питающих напряжений Е 1 и Е 2 (рис 2.8).

Полярность их такова, что на эмиттерном переходе напряжение прямое, а на коллекторном переходе – обратное. Поэтому сопротивление эмиттерного перехода мало и для получения нормального тока в этом переходе достаточно напряжения Е 1 в десятые доли вольта. Сопротивление коллеткторного перехода велико, и напряжение Е 2 обычно составляет единицы или десятки вольт.

Рис. 2.8. Движение электронов и дырок в транзисторе n-р-n типа.

Принцип работы транзистора заключается в том, что прямое напряжение эмиттерного перехода, т. е. участка база – эмиттер, существенно влияет на ток коллектора: чем больше это напряжение, тем больше токи эмиттера и коллектора. При этом изменения тока коллектора лишь незначительно меньше изменений тока эмиттера. Таким образом, напряжение между базой и эмиттером Е 1 , т.е. входное напряжение, управляет током коллектора. Усиление электрических колебаний с помощью транзистора основано именно на этом явлении.

Физические процессы в транзисторе происходят следующим образом. При увеличении прямого входного напряжения Е 1 понижается потенциальный барьер в эмиттерном переходе и соответственно возрастает ток через этот переход – ток эмиттера i э . Электроны этого тока инжектируются из эмиттера в базу и благодаря диффузии проникают сквозь базу в коллекторный переход, увеличивая ток коллектора. Так как коллекторный переход работает при обратном напряжении, то в этом переходе возникают объемные заряды, показанные на рисунке кружочками со знаками « + » и « – ». Между ними возникает электрическое поле. Оно способствует продвижению (экстракции) через коллекторный переход электронов, пришедших сюда от эмиттера, т.е. втягивает электроны в область коллекторного перехода.

Если толщина базы достаточно мала и концентрация дырок в ней невелика, то большинство электронов, пройдя через базу, не успевает рекомбинировать с дырками базы и достигает коллекторного перехода. Лишь небольшая часть электронов рекомбинирует в базе с дырками. В результате рекомбинации возникает ток базы, протекающий в проводе базы. Действительно, в установившемся режиме число дырок в базе должно быть неизменным. Вследствие рекомбинации каждую секунду сколько-то дырок исчезает, но столько же новых дырок возникает за счет того, что из базы уходит в направлении к полюсу источника Е 1 такое же число электронов. Иначе говоря, в базе не может накапливаться много электронов.

Если бы база имела значительную толщину и концентрация дырок в ней была велика, то большая часть электронов эмиттерного тока, диффундируя через базу, рекомбинировала бы с дырками и не дошла бы до коллекторного перехода.

Под действием входного напряжения возникает значительный ток эмиттера, в область базы со стороны эмиттера инжектируются электроны, которые для данной области являются неосновными носителями. Не успевая рекомбинировать с дырками при диффузии через базу, они доходят до коллекторного перехода. Чем больше ток эмиттера, тем больше электронов приходит к коллекторному переходу и тем меньше становится его сопротивление. Соответственно увеличивается ток коллектора. Иначе говоря, с увеличением тока эмиттера в базе возрастает концентрация неосновных носителей, инжектированных из эмиттера, а чем больше этих носителей, тем больше ток коллекторного перехода, т.е. ток коллектора i к .

Следует отметить, что эмиттер и коллектор можно поменять местами (так называемый инверсный режим). Но на транзисторах, как правило, коллекторный переход делается со значительно большей площадью, нежели эмиттерный переход, так как мощность, рассеиваемая в коллекторном переходе, гораздо больше, чем мощность, рассеиваемая в эмиттерном. Поэтому если использовать эмиттер в качестве коллектора, то транзистор будет работать, но его можно применять только при значительно меньшей мощности, что нецелесообразно. Если площади переходов сделаны одинаковыми (транзисторы в таком случае называют симметричными ), то любая из крайних областей может с одинаковым успехом работать в качестве эмиттера или коллектора.

Мы рассмотрели физические явления в транзисторе типа n-p-n. Подобные же процессы происходят и в транзисторе типа p-n-p, но в нем меняются ролями электроны и дырки, а также изменяются на обратные полярности напряжений и направления токов.

Наиболее распространены три способа включения транзисторов:

- схема с общей базой , когда вход эмиттера и выход коллектора

подключены к общей базе;

- в схеме с общем эмиттером выходная цепь коллектора

подключается к эмиттеру вместо базы;

- схема с общим коллектором , иначе называемая эмиттернымповторилем.

Вывод: 1. Наличие примесей в полупроводниках обуславливает нарушение равенства между количеством дырок и электронов, и электрический ток будет создан преимущественно зарядами одного знака в зависимости оттого, что преобладает в полупроводнике.

2. В основе конструкции любого полупроводникового прибора лежат равновесные р -n переходы.

Основным элементом большинства полупроводниковых элементов является p-n переход.

р-n переходом называется область на границе полупроводников р и n типов.

Условно р-n переход можно показать следующим образом:

Опыт 14.3. Полупроводниковый диод.

Цель работы:

Изучить принцип работы полупроводникового диода.

Оборудование:

1. Источник регулируемого переменного напряжения

2. Осциллограф

3. Стенд со схемой

Ход работы.

1. Установка состоит из источника регулируемого переменного напряжения, осциллографа и стенда со схемой. Переменное напряжение от источника подается на вход стенда. На экране осциллографа наблюдается синусоида. Если увеличивать или уменьшать подаваемое напряжение, то соответственно увеличивается или уменьшается амплитуда синусоидального сигнала, видимого на экране осциллографа.

2. Изучим характер тока, протекающего через диод. Напряжение, попадающее на стенд, подается на края цепочки, состоящей из последовательно соединенных сопротивления и диода. В результате через цепочку идет уже не переменный ток, а пульсирующий, поскольку диод выпрямляет ток. Он пропускает ток в одном направлении и не пропускает в другом. На схеме диод изображается таким образом, что острие треугольника, на данном этапе оно направлено вверх, указывает направление тока проходящего через диод. Для того чтобы выяснить каков характер тока, проходящего через диод, на вертикальный усилитель подается напряжение, которое снимается с концов сопротивления. Это напряжение пропорционально току, текущему через сопротивление. Наблюдают, что ток через диод действительно течет только в одном направлении. Полпериода ток отсутствует - горизонтальные участки, полпериода ток идет. Это половинки синусоид, которые смотрят вниз. Но если менять величину напряжения, подаваемую на вход стенда, будет меняется и величина тока, текущего через диод. Если повернуть диод на 180 градусов, острие треугольника на схеме будет направлено вниз, т.е. изменится направление тока, протекающего через диод. Сигнал на экране осциллографа пропал. Диод извлекают из стенда, и вновь появился сигнал на экране осциллографа. Однако теперь уже те полпериода, которые соответствуют протеканию тока через диод, отображаются половинками синусоиды, направленными вверх.



3. Вольт-амперная характеристика диода - зависимость между током, протекающим через диод и напряжением, которое подается на диод. Ток, протекающий через диод, по-прежнему пропорционален напряжению на концах сопротивлений. Это напряжение подается на вертикальный вход осциллографа, а на горизонтальный- напряжение с концов этой цепочки, оно пропорционально напряжению на диоде. В результате на экране осциллографа наблюдается вольт-амперная характеристика диода. Полпериода тока нет, это горизонтальный участок этой характеристики, и полпериода ток идет. Здесь в определенной степени выполняется закон Ома. Величина тока, текущего через диод, пропорциональна напряжению, подаваемому на диод. Если увеличивать или уменьшать напряжение, которое подается на диод, соответственно увеличивается или уменьшается ток, текущий через диод.

Вывод:

Односторонняя проводимость p-n перехода позволяет создать выпрямляющую полупроводниковое устройство, так называемый полупроводниковый диод.

1. Знак проводимости соответствует знаку источника, тогда дырки переместятся влево, электроны вправо. Через р-n переход пойдет электрический ток, состоящий из электронов и дырок.

2. Знак проводимости противоположен знаку источника, тогда носители заряда движутся к полюсам, не переходя границу контакта полупроводников, ток через р-n переход не возникает, следовательно, р-n переход обладает односторонней проводимостью.

р-n переход используется в полупроводниковых диодах.

Транзистор – полупроводниковый прибор, который состоит из двух р-n переходов, включенных встречно. Эмиттер – область транзистора, откуда берутся носители заряда. Коллектор – область, куда стекаются носители заряда. База выполняет роль, аналогичную роли управляющей сетки в лампе.

Транзисторы служат для усиления электрических сигналов, потому что небольшое изменение напряжения между эмиттером и базой приводит к значительному изменению напряжения на нагрузке, включенной в цепи коллектора.

Опыт 14.4 Усилитель постоянного тока на транзисторе

Оборудование:

1. Транзистор на подставке;

2. Фотодиод на подставке;

3. Источник тока В-24;

4. Соединительные провода;

5. Электрическая лампочка;

6. Два демонстрационных гальванометра;

Схема установки:

При затемнении фотоэлемента ток небольшой. Если же осветить фотоэлемент, то ток возрастает на участке G2.

Тесты к лекции №14

Тест 14.1. Какие выводы можно сделать по результатам опыта демонстрации зависимости сопротивления полупроводника от температуры?

£ с увеличением температуры полупроводника увеличивается его сопротивление

£ сопротивление полупроводника не зависит от его температуры

£ с увеличением температуры полупроводника уменьшается его сопротивление

£ сопротивление полупроводника несущественно зависит от его температуры

Тест 14.2. Как называется материал, электрические свойства которого в сильной степени зависят от концентрации в нём химических примесей и внешних условий?

£ сверхпроводник.

£ магнитоэлектрик.

£ сегнетоэлектрик.

£ полупроводник.

Тест 14.3. Как называется квазичастица, заряд которой по модулю равен заряду электрона, а масса равна массе электрона?

£ нейтрон

£ «дырка»

£ α-частица

£ позитрон

Тест 14.4. Как называется полупроводниковый прибор, который состоит из двух р-n переходов, включенных встречно?

£транзистор

£ коллектор

£ гальванометр

£ тиристор

Тест 14.5. Как называется область транзистора, откуда берутся

носители заряда?

£коллектор

£эмиттер

£фотоэлемент

£стабилитрон

Тесты к главе №3.

Тест 1.Что понимают под сторонними силами?

£ Силы не электростатического происхождения.

£ Силы, обусловленные только химическими процессами.

£ Только механические силы (силы, прикладываемые для вращения ротора генератора).

£ Силы электрического происхождения.

Тест 2.Физическая величина, характеризующаяся зарядом, прошедшим через площадку проводника единичной площади за единицу времени, это…

£ сила тока.

£ плотность тока.

£ напряжение.

£ удельное электрическое сопротивление.

Тест 3.При последовательном подключении к сети постоянного тока двух проводников сила тока в сети в 6,25 раза меньше, чем при параллельном соединении этих же проводников. Во сколько раз отличаются сопротивления проводников?

Тест 4.От чего зависит вектор поляризации в диэлектрике?

£состава диэлектрика

£размера диэлектрика

£электрической индукции

£напряжённости поля в диэлектрике

£наличия свободных зарядов в диэлектрике

Тест 5.Выберете правильные выводы, следующие из опыта по демонстрации зависимости сопротивления проводника от температуры?

£сопротивление проводника не зависит от температуры

£с увеличением температуры проводника увеличивается его сопротивление

£с уменьшением температуры проводника увеличивается его сопротивление

£с увеличением температуры проводника уменьшается его сопротивление

£с уменьшением температуры проводника уменьшается его сопротивление

Тест 6.В каком году Камерлинг - Онессом было открыто явление сверхпроводимости?

Тест 7.Если в разветвленной цепи имеется N-узлов то, для какого числа узлов можно составить независимые уравнения .

Тест 8.

При параллельном соединении проводников одинаковым для них является:

Тест 9.

Выделите формулы для последовательного соединения проводников:

£

£

£

£

£

Тест 10.Формулировка «явление прямого преобразования теплоты в электричество в твердых или жидких проводниках, а также обратное явление прямого нагревания и охлаждения спаев двух проводников проходящим током» - это определение…

£термоэлектричества

£термо-ЭДС

£эффекта Фарадея

£эффекта Холла

Тест 11.От чего зависит величина термо-ЭДС термопары?

£от разности температур спаев+

£от удельных термо-ЭДС обоих проводников

£от разности напряжений

£от разности потенциалов

Тест 12.Формулировка «Разность электрических потенциалов, возникающая между контактирующими телами в условиях термодинамического равновесия»- это определение…

£контактной разности напряжений.

£контактной разности сопротивлений.

£контактной разности ионов.

£контактной разности потенциалов.

£контактной разности токов

Тест 13. Растворы солей, щелочей, кислот являются…

£ электролитами

£ полуэлектролитами

£ диэлектриками

£ квазиэлектролитами

£ полупроводниками

Тест 14.Какие из нижеперечисленных металлов являются благородными?

Тест 15.Первый закон Фарадея для электролиза гласит:

£электрохимический эквивалент вещества, прямо пропорционален его химическому эквиваленту.

£ масса вещества, выделившегося на электродах, прямо пропорциональна квадрату заряда, протекшему через электролит

£масса вещества, выделившегося на электродах, прямо пропорциональна заряду, протекшему через электролит.+

£ масса вещества, выделившегося на электродах, прямо пропорциональна корню квадратному из величины заряда, протекшему через электролит

£масса вещества, выделившегося на электродах, обратно пропорциональна заряду, протекшему через электролит

Тест 16.Какие физические факторы оказывают ионизирующее воздействие на газ?

£ нагревание

£ электрическое поле

£ увеличение объема газа.

£ воздействие излучения.

£ понижение атмосферного давления.

Тест 17.Если рассмотреть газоразрядную трубку во время протекания разряда, то можно заметить, что разряд не однороден. Выделяют следующие области:

£ Астоново темное пространство; катодную пленку; тлеющее свечение; отрицательный столб.

£ Астоново темное пространство; анодную пленку; катодное темное пространство; тлеющее свечение; Фарадеево темное пространство; отрицательный столб.

£ Астоново темное пространство; катодную пленку; катодное темное пространство; тлеющее свечение; Фарадеево темное пространство; положительный столб.

£ Астоново темное пространство; катодную пленку; тлеющее свечение; отрицательный столб; положительный столб

£ катодную пленку; катодное темное пространство; тлеющее свечение; Фарадеево темное пространство; положительный столб

Тест 18.Какой разряд применяется в основном для целей освещения и рекламы?

£ коронный.

£ дуговой.

£ тлеющий.

£искровой

£мерцающий

Тест 19.Какие существуют виды плазмы по методу получения?

£ газоразрядные

£ высоковольтные

£ высокотемпературные

£ магнитно-электронные

Тест 20.Какие виды магнитных ловушек существуют?

£ бетатрон

£ стеллаток

£ стеллатор

£ токамак

£ плазмотрон

Тест 21.Какое свойство является основным для плазмы?

£ хорошая электропроводность

£ поляризуемость

£ ионизируемость

£ квазинейтральность

£ время жизни

Тест 22.Как называется зона контакта полупроводников с различными типами проводимости?

£запрещенная зона

£зона проводимости

£p-n переход

£валентная зона

Тест 23.Как называется область транзистора, куда поступают носители заряда?

£эмиттер

£коллектор

£фотоэлемент

£микрочип

Тест 24.В чем состоит особенность полупроводников?

£жесткий дипольный момент молекул вещества

£высокая рабочая температура

£наличие свободных носителей отрицательных зарядов

£имеется два рода носителей электрического заряда+

£наличие свободных носителей положительных зарядов


Магнитное поле в вакууме и веществе

15. Взаимодействие токов. Магнитное поле. Индукция и напряженность магнитного поля. Виток с током в магнитном поле. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов.

16. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток. Сила Ампера. Работа по перемещению проводника с током в магнитном поле. Сила Лоренца. Определение удельного заряда электрона.

17. Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость. Магнитомеханические явления.

18. Понятие о диа-, пара- и ферромагнетиках. Доменная структура ферромагнетиков. Магнитный гистерезис. Работы Столетова. Точка Кюри. Магнитные материалы и их применение.

Взаимодействие токов. Магнитное поле. Индукция и напряженность магнитного поля. Виток с током в магнитном поле. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов

15.1. Взаимодействие токов

15.2. Магнитное поле. Индукция и напряженность магнитного поля

15.3. Виток с током в магнитном поле

15.4. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов

Изучение природы магнитных явлений началось с рассмотрения естественного магнетизма. Это взаимодействие естественных магнитов происходило и с некоторыми веществами, которые относятся к классу ферромагнетиков. В дальнейшем мы увидим, что взаимодействие остается таким же, если один из естественных магнитов заменен на проводник с током (опыт Эрстеда), и, наконец, можно наблюдать это явление, если взаимодействуют два проводника с током (опыт Ампера).

Опыт 15.1 Опыт Эрстеда.

Оборудование:


Рис. 15.1.

1. Магнитная стрелка;

2. Источник тока В-24;

3. Проводник;

Схема установки:

Стрелка первоначально параллельна проводнику. При включении источника тока стрелка устанавливается перпендикулярно проводнику. При отключении источника тока стрелка возвращается в исходное положение.

Вывод: вокруг проводника с током существует магнитное поле, т.е. там, где есть движущиеся электрические заряды, существует магнитное поле.

Опыт 15.2 Взаимодействие двух проводников с током.

Оборудование:

1. Две ленты гибкие из фольги;

2. Источник тока В-24;

3. Проводник;

Схема установки:

Токи направлены противоположно – проводники при этом отталкиваются.

Токи сонаправлены – при этом проводники притягиваются.

Вывод: при взаимодействии двух проводников с током возникают силы, которые отталкивают или притягивают проводники.

Изучение магнитных явлений показало, что магнитное взаимодействие наблюдается тогда, когда имеет место перемещение электрических зарядов по отношению к наблюдателю (или регистрирующему прибору). Поскольку все явления, связанные с относительным движением объектов, называются релятивистскими (от английского слова “relative” – относительный), то говорят, что магнетизм – это релятивистский эффект.

Подготовлено

Учеником 10 «А» класса

Школы № 610

Ивчиным Алексеем

Реферат на тему:

«Полупроводниковые диоды и транзисторы, области их пременеия»

1. Полупроводники: теория и свойства

2. Основные полупроводниковые приборы (Строение и применение)

3. Типы полупроводниковых приборов

4. Производство

5. Область применения

1.Полупроводники: теория и свойства

Сначала надо познакомиться с механизмом проводимости в полупроводниках. А для этого нужно понять природу связей удерживающих атомы полупроводникового кристалла друг возле друга. Для примера рассмотрим кристалл кремния.

Кремний-четырехвалентный элемент. Это означает, что во внешней

оболочке атома имеются четыре электрона, сравнительно слабо связанные

с ядром. Число ближайших соседей каждого атома кремния также равно

четырем. Взаимодействие пары соседних атомов осуществляется с помощью

паоноэлектронной связи, называемой ковалентной связью. В образовании

этой связи от каждого атома участвуют по одному валентному электрону, ко-

торые отщепляются от атомов (коллективизируются кристаллом) и при

своем движении большую часть времени проводят в пространстве между

соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга. Каждый атом образует четыре связи с соседними,

и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла.

Валентные электроны принадлежат всему кристаллу. Парноэлектронные связи кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкои температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны прочно привязаны к кристаллической решетке, и внешнее электрическое поле не оказывает заметного влияния на их движение.

Электронная проводимость.

При нагревании кремния кинетическая энергия частиц повышается, и

наступает разрыв отдельных связей. Некоторые электроны покидают свои орбиты и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решетки, образуя электрический ток.

Проводимость полупроводников обусловленную наличием у металлов свободных

электронов электронов, называют электронной проводимостью. При повышении температуры число разорванных связей, а значит, и свободных электронов увеливается. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 10в17 до 10в24 1/м в3. Это приводит к уменьшению сопротивления.

Дырочная проводимость.

При разрыве связи образуется вакантное место с недостающим электроном.

Его называют дыркой. В дырке имеется избыточный положительный заряд по сравнению с остальными, нормальными связями. Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один

из электронов, обеспечивающих связь атомов, перескакивает на место об-

разовавшиеся дырки и восстанавливает здесь парноэлектронную связь.

а там, откуда перескочил этот электрон, образуется новая дырка. Таким

образом, дырка может перемещаться по всему кристаллу.

Если напряженность электрического поля в образце равна нулю то перемещение дырок, равноценное перемещению положительных зарядов, происходит беспорядочно и поэтому не создает электрического тока. При наличии электрического поля возникает упорядоченное перемещение дырок, и, таким образом, к электрическому току свободных электронов добавляется электрический ток связанный с перемещением дырок. Направление движения дырок противоположно направлению движения электронов.

Итак, в полупроводниках имеются носители заряда двух типов: электроны и дырки. Поэтому полупроводники обладают не только электронной, но и дырочной проводимостью. Проводимость при этих условиях называют собственной проводимостью полупроводников. Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов, например, в германии при комнатной температуре ne=3на10в23 см в –3. В то же время число атомов германия в 1 см кубическом порядка 10в23. Таким образом, число свободных электронов составляет примерно одну десятимиллиардную часть от общего числа атомов.

Существенная особенность полупроводников состоит в том, что в них

при наличии примесей наряду с собственной проводимостью возникает

дополнительная - примесная проводимость. Изменяя концентрацию

примеси, можно значительно изменять число носителей заряда того

или иного знака. Благодаря этому можно создавать полупроводники с

преимущественной концентрацией либо отрицательно, либо положи-

тельно заряженных носителей. Эта особенность полупроводников откры-

вает широкие возможности для практического применения.

Донорные примеси.

Оказывается, что при наличии примесей, например атомов мышьяка, даже при очень малой их концентрации, число свободных электронов возрастает во

много раз. Происходит это по следующей причине. Атомы мышьяка имеют пять валентных электронов, четыре из них участвуют в создании ковалентной связи данного атома с окружающими, например с атомами кремния. Пятый валентный электрон оказывается слабо связан с атомом. Он легко покидает атом мышьяка и становится свободным. Концентрация свободных электронов значительно возрастает, и становится в тысячу раз больше концентрации свободных электронов в чистом полупроводнике. Примеси, легко отдающие электроны называют донорными, и такие полупроводники являются полупроводниками n-типа. В полупроводнике n-типа электроны являютсн основныим носителями заряда, а дырки - неосновными.

Акцепторные примеси.

Если в качестве примеси использовать индий, атомы которого трехвалентны, то характер проводимости полупроводника меняется. Теперь для образования нормальных парноэлектронных связей с соседями атому индия не

достает электрона. В результате образуется дырка. Число дырок в крис-

талле равно числу атомов примеси. Такого рода примеси на-

зывают акцепторными (принимающими). При наличии электрического поля

дырки перемешаютс по полю и возникает дырочная проводимость. По-

лупроводники с преобладанием дырочкой проводимости над электрон-

ной называют полупронодниками р-типа (от слова positiv - положительный).

2.Основные полупроводниковые приборы (Строение и применение)

Существуют два основных полупроводниковых приборов: диод и транзистор.

В нястояшее время для выпрямления электрическигй тока в радиосхемах наряду с двухэлектродными лампами вся больше применяют полупроводниках диоды, так как они обладают рядом преимуществ. В электронной лампе носители заряда электроны возникают за счет нагревания катода. В p-n переходе носители заряда образуется при введении в кристалл акцепторной или донорной примеси.Таким образом, здесь отпадает необходимость источника энергии для получения носителей заряда. В сложных схемах экономия энергии, получается за счет этого, оказывается весьма значительной значительной. Кроме того, полупроводниковые выпрямители при тех же значениях выпрямленого тока более миниатюрны, чем ламповые.

Полупроводниковые диоды изготовляют из германия, кремния. селена и других веществ. Рассмотрим как создается p-n переход при использовании днорной примеси, этот переход не удастся получить путем механического соеденения двух полупроводников различных типов, т.к. при этом получается слишком большой зазор между полупроводииками.Эта толщина должна быть не больше межатомных растояний. По этому в одну из поврхностей образца вплавляют индий. Вследствие диффузии атомов индии индия в глубь монокристалла германня у поверхности германия преобразуется область с проводимцстью р-типа. Остальная часть образца германии, в которуй атомы индмя нс проникли, по-прежнему имеет проводимосгь n-типа. Между областями возникает p-n переход. Вполупроводниковом диоде германий служит катодом, а индий - анодом. На рисунке 1 показано прямое (б) и обратное (в) подсоеденение диода.

Вольт-Амперная характеристика при прямом и обратном соединении показана на рисунке 2.

Заменили лампы, очень широко используются в техники, в основном для выпрямителей, также диоды нашли применение в различных приборах.

Транзистор.

Рассмотрим один из видов транзистора из германия или кремния с введенными в них донорными и акцепторными примесями. Распределение примесей таково, что создается очень тонкая (порядка нескольких микрометров) прослойка полупроводника n-типа между двумя слоями полупроводника р-типа рис. 3. Эту тонкую прослойку называют основанием или базой.В кристалле образуются два р-n-перехода, прямые направления которых противоположны. Три вывода от областей с различными типами проводимости позволяют включать транзистор в схему, изображенную на рисунке 3. При данном включении

левый р-n переход является прямым и отделяет базу от области с проводимостью р-типа, называемую эмитером. Если бы не было правого р –n -перехода, в цепи эмиттер - база существовал бы ток, зависящий от напряжения источников (батареи Б1 и источника переменного напря-

жения) и сопротивления цепи, включая малое сопротивление прямого пе-

рехода эмиттер - база. Батарея Б2 включена так, что правый р-n-переход в схеме (см. рис. 3) является обратным. Он отделяет базу от правой области с проводимостью р-типа, называемой коллектором. Если бы не было левого p-n-перехода, сила тока и цепи коллектора была бы близка к нулю. Так как сопротивление обратного перехода очень велико. При существовании же тока в левом р -n переходе появляется ток и в цепи коллектора, причем сила тока в коллекторе лишь немного меньше силы тока в эмиттере.При создании напряжения между эмиттером и базой основные носители полупроводника р-типа - дырки проникают в базу, гдр они являютс уже леосновными носителями. По-скольку толщина базы очень мала и число основных носителей (электронов) в ней невелико, попавшие в нее дырки почти не объединяются (не рекомбинируют) с электронами базы и проникают н коллектор за счет диффузии. Правый р-n-переход закрыт для основных носителей заряда базы – электронов, но не для дырок. В коллекторе дырки увлекаются электрическим полем и замыкают цепь. Сила тока, ответвляющегося в цепь эмиттера из базы, очень мала, так как площадь сечения базы в горизонтальной (см.рис. 3) плоскости много меньше сечения в вертикальной плоскости. Сила тока в коллекторе, практи чески равная силе тока в эмиттере, изменяется вместе с током в эмиттере. Сопротивление резистора R мало влияет на ток в коллекторе, и это сопротивление можно сделать достаточно большим. Управляя током эмиттера с помощью источника переменного напряжения, включенного в его цепь, мы получим синхронное изменение напряжения на резисторе. При большом сопротивление резистора изменение напряжения на нем может в десятки тысяч раз превышать изменение сигнала в цепи эмиттера.Это означает усиление напряжения. Поэтому на нагрузке R можно получить электрические сигналы, мощность которых во много раз превосходит мощность, поступающую в цепь эмиттера.Они заменяют электронные лампы, широко используются в технике.

3. Типы полупроводниковых приборов.

Кроме плоскостныых диодов рис 8 и транзисторов существуют еще и точечные диоды рис 4,. Точечные транзисторы (строение см на рисунке) перед пременением его формуют т.е. пропускают ток определенной величины, вследствии чего под острием проволоки образуются область с дырочной проводимостью. Транзисторы бывают p-n-p и n-p-n типов. Обозначение и общий вид на рисунке 5.

Существуют фото- и термо- резисторы и варисторы вид на рисунке. К плосткостным диодам относятся селеновые выпрямители.Основой такого диода служит стальная шайба, покрытая с одной стороны слоем селена, являющегося полупроводников с дырочной проводимостью вид на рис 7 . Поверхност селена покрыта сплавом кадмия, в результате чего образуется пленка обладающая электронной проводимостью, вследствии чего образуется переход выпремляющий ток.Чем больше площадь, тем больше выпремляемый ток.

4. Призводство

Технология изготовления диода такова. На поверхности квадратной пластинки площадью 2-4 см в кв и толщиной в несколько долей миллиметра, вырезанной из кристала полупроводника с электронной проводимостью, расплавляют кусочек индия. Индий крепко сплавляется с пластинкой.При этом атомы индия проникают (диффузируют) в толщу пластинки, образуя в ней область с преобладанием дырочной проводимости рис 6 Получается полупроводниковый прибор с двумя областями различного типа проводимости,а между ними p-n-переход. Чем тоньше пластинка полупроводника. тем меньше сопротивление диода в прямом направлениии, тем больше выправленный диодом ток. Контактами диода служат капелька индия и металлический диск или стержень с выводными проводниками

После сборки транзистора его монтируют в корпус, присоеденяют эл. выводы к контактным пластинам кристалла и выводом корпуса и герметизируют корпус.

5. Область применения

Диоды обладают большой надежностью, но граница их пременения от –70 до 125 С. Т.к. у точечного диода площадь соприкосновения очень мала, поэтому токи, которые могут выпремлять такие диоды не больше 10-15 ма. И их используют в основном для модуляции колебаний высокой частоты и для измерительных приборов. Для любого диода существуют некоторые предельно допустимые пределы прямого и обратного тока, зависящих от прямого и обратного напряжения и определяющи его выпремляющие и прочностные св-ва.

Транзисторы, как и диоды, чувствительны к температуре и перегрузке и проникающим излучением. Транзисторы в отличие от радиоламп сгорают от неправильного подключения.

Односторонняя проводимость контактов двух полупроводников (или металла с полупроводником) используется для выпрямления и преобразования переменных токов. Если имеется один электронно-дырочный переход, то его действие аналогично действию двухэлектродной лампы - диода (см.§ 105). Поэтому полупроводниковое устройство, содержащее один р-n -переход, называется полупроводниковым (кристаллическим ) диодом . Полупроводниковые диоды по конструкции делятся на точечные и плоскостные .

Рис. 339 Рис. 340

В качестве примера рассмотрим точечный германиевый диод (рис.339), в котором тонкая вольфрамовая проволока 1 прижимается к n -германию 2 острием, покрытым алюминием. Если через диод в прямом направлении пропустить кратковременный импульс тока, то при этом резко повышается диффузия А1 в Ge и образуется слой германия, обогащенный алюминием и обладающий р -проводимостью. На границе этого слоя образуется р-n -переход, обладающий высоким коэффициентом выпрямления. Благодаря малой емкости контактного слоя точечные диоды применяются в качестве детекторов (выпрямителей) высокочастотных колебаний вплоть до сантиметрового диапазона длин волн.

Принципиальная схема плоскостного меднозакисного (купроксного) выпрямителя дана на рис. 340. На медную пластину с помощью химической обработки наращивается слой закиси меди Сu 2 О, который покрывается слоем серебра. Серебряный электрод служит только для включения выпрямителя в цепь. Часть слоя Сu 2 О, прилегающая к Сu и обогащенная ею, обладает электронной проводимостью, а часть слоя Сu 2 О, прилегающая к Ag и обогащенная (в процессе изготовления выпрямителя) кислородом,- дырочной проводимостью. Таким образом, в толще закиси меди образуется запирающий слой с пропускным направлением тока от Сu 2 О к Сu ().

Технология изготовления германиевого плоскостного диода описана в § 249 (см. рис.325). Распространенными являются также селеновые диоды и диоды на основе арсенида галлия и карбида кремния. Рассмотренные диоды обладают целым рядом преимуществ по сравнению с электронными лампами (малые габаритные размеры, высокие к. п. д. и срок службы, постоянная готовность к работе и т. д.), но они очень чувствительны к температуре, поэтому интервал их рабочих температур ограничен (от –70 до +120°С). р-n- Переходы обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерирования электрических колебаний. Приборы, предназначенные для этих целей, получили название полупроводниковых триодов или транзисторов (первый транзистор создан в 1949 г. американскими физиками Д. Бардином, У. Браттейном и У. Шокли; Нобелевская премия 1956 г.).


Для изготовления транзисторов используются германий и кремний, так как они характеризуются большой механической прочностью, химической устойчивостью и большей, чем в других полупроводниках, подвижностью носителей тока. Полупроводниковые триоды делятся на точечные и плоскостные . Первые значительно усиливают напряжение, но их выходные мощности малы из-за опасности перегрева (например, верхний предел рабочей температуры точечного германиевого триода лежит в пределах 50 - 80°С). Плоскостные триоды являются более мощными. Они могут быть типа р-п-р и типа п-р-п в зависимости от чередования областей с различной проводимостью.

Для примера рассмотрим принцип работы плоскостного триода р-п-р , т. е. триода на основе n -полупроводника (рис. 341). Рабочие «электроды» триода, которыми являются база (средняя часть транзистора), эмиттер и коллектор (прилегающие к базе с обеих сторон области с иным типом проводимости), включаются в схему с помощью невыпрямляющих контактов - металлических проводников. Между эмиттером и базой прикладывается постоянное смещающее напряжение в прямом направлении, а между базой и коллектором - постоянное смещающее напряжение в обратном направлении. Усиливаемое переменное напряжение подается на входное сопротивление , а усиленное - снимается с выходного сопротивления

Протекание тока в цепи эмиттера обусловлено в основном движением дырок (они являются основными носителями тока) и сопровождается их «впрыскиванием» - инжекцией - в область базы. Проникшие в базу дырки диффундируют по направлению к коллектору, причем при небольшой толщине базы значительная часть инжектированных дырок достигает коллектора. Здесь дырки захватываются полем, действующим внутри перехода (притягиваются к отрицательно заряженному коллектору), и изменяют ток коллектора. Следовательно, всякое изменение тока в цепи эмиттера вызывает изменение тока в цепи коллектора.

Прикладывая между эмиттером и базой переменное напряжение, получим в цепи коллектора переменный ток, а на выходном сопротивлении - переменное напряжение. Величина усиления зависит от свойств p-n -переходов, нагрузочных сопротивлений и напряжения батареи Б к. Обычно >> , поэтому значительно превышает входное напряжение (усиление может достигать 10 000). Так как мощность переменного тока, выделяемая в , может быть больше, чем расходуемая в цепи эмиттера, то транзистор дает и усиление мощности. Эта усиленная мощность появляется за счет источника тока, включенного в цепь коллектора.

Из рассмотренного следует, что транзистор, подобно электронной лампе, дает усиление и напряжения и мощности. Если в лампе анодный ток управляется напряжением на сетке, то в транзисторе ток коллектора, соответствующий анодному току лампы, управляется напряжением на базе.

Принцип работы транзистора п-р-п -типа аналогичен рассмотренному выше, но роль дырок играют электроны. Существуют и другие типы транзисторов, так же как и другие схемы их включения. Благодаря своим преимуществам перед электронными лампами (малые габаритные размеры, высокие к. п. д. и срок службы, отсутствие накаливаемого катода и поэтому потребление меньшей мощности, отсутствие необходимости в вакууме и т. д.), транзистор совершил революцию в области электронных средств связи и обеспечил создание быстродействующих ЭВМ с большим объемом памяти.

Контрольные вопросы

  • В чем суть адиабатического приближения и приближения самосогласованного поля?
  • Чем отличаются энергетические состояния электронов в изолированном атоме и кристалле? Что такое запрещенные и разрешенные энергетические зоны?
  • Чем различаются по зонной теории полупроводники и диэлектрики? металлы и диэлектрики?
  • Когда по зонной теории твердое тело является проводником электрического тока?
  • Как объяснить увеличение проводимости полупроводников с повышением температуры?
  • Чем обусловлена проводимость собственных полупроводников?
  • Почему уровень Ферми в собственном полупроводнике расположен в середине запрещенной зоны? Доказать это положение.
  • Каков механизм электронной примесной проводимости полупроводников? дырочной примесной проводимости?
  • Почему при достаточно высоких температурах в примесных полупроводниках преобладает собственная проводимость?
  • Каков механизм собственной фотопроводимости? примесной фотопроводимости? Что такое красная граница фотопроводимости?
  • Каковы по зонной теории механизмы возникновения флуоресценции и фосфоресценции?
  • В чем причины возникновения контактной разности потенциалов?
  • В чем суть термоэлектрических явлений? Как объяснить их возникновение?
  • Когда возникает запирающий контактный слой при контакте металла с полупроводником n -типа? с полупроводником р -типа? Объясните механизм его образования.
  • Как объяснить одностороннюю проводимость р-п -перехода?
  • Какова вольт-амперная характеристика p-n -перехода? Объясните возникновение прямого и обратного тока.
  • Какое направление в полупроводниковом диоде является пропускным для тока?
  • Почему через полупроводниковый диод проходит ток (хотя и слабый) даже при запирающем напряжении?

Задачи

31.1. Германиевый образец нагревают от 0 до 17°С. Принимая ширину запрещенной зоны кремния 0,72 эВ, определить, во сколько раз возрастет его удельная проводимость. [В 2,45 раза]

31.2. В чистый кремний введена небольшая примесь бора. Пользуясь Периодической системой Д. И. Менделеева, определить и объяснить тип проводимости примесного кремния.

31.3. Определить длину волны, при которой в примесном полупроводнике еще возбуждается фотопроводимость.

Московский Горный Государственный Университет

Реферат

по предмету СХЕМОТЕХНИКА

Полупроводниковые приборы.

(диод, транзистор, полевой транзистор)

ст. гр. САПР-1В-96

Царев А.В.

Москва 1999 г.

Оглавнение

Полупроводниковые диоды.

Полупроводниковые транзисторы.

Полевые МДП транзисторы.

Литература.

Полупроводниковые диоды

Диод - полупроводниковый прибор, пропускающий электрический ток только одного направления и имеющий два вывода для включения в электрическую цепь.

Полупроводниковый диод - полупроводниковый прибор p-n- переходом. Рабочий элемент- кристалл германия, обладающий проводимостью n–типа за счёт небольшой добавки донорной примеси Для создания в нём p-n-переходов в одну из его поверхностей вплавляют индий. Вследствие диффузии атомов индия вглубь монокристалла германия у поверхности германия образуется область р-типа. Остальная часть германия по-прежнему остаётся n- типа. Между этими двумя областями возникает р-n-переход. Для предотвращения вредных воздействий воздуха и света кристалл германия помещают в герметический корпус. устройство и схематическое изображение полупроводникового диода:

Достоинствами полупроводниковых диодов являются малые размеры и масса, длительный срок службы, высокая механическая прочность; недостатком - зависимость их параметров от температуры.

Вольт - амперная характеристика диода (при большом напряжении сила тока достигает наибольшей величины- ток насыщения) имеет нелинейный характер, поэтому свойства диода оцениваются крутизной характеристики:


Полупроводниковые транзисторы

Свойства p-n-пеpехода можно использовать для создания усилителя электрических колебаний, называемого полупроводниковым триодом или транзистором.

В полупроводниковом триоде две p-области кристалла разделяются узкой n-областью. Такой триод условно обозначают p-n-p. Можно делать и n-p-n триод, т.е. разделять две n-области кристалла узкой p-областью (рис.).


Триод p-n-p типа состоит из трех областей, крайние из которых обладают дырочной проводимостью, а средняя -электронной. К этим трем областям триода делаются самостоятельные контакты э, б и к, что позволяет подавать разные напряжения на левый p-n-пеpеход между контактами э и б и на правый n-p-пеpеход между контактами б и к.

Если на правый переход подать обратное напряжение, то он будет заперт и через него будет протекать очень малый обратный ток. Подадим теперь прямое напряжение на левый p-n-пеpеход, тогда через него начнёт проходить значительный прямой ток.

Одна из областей триода, например левая, содержит обычно в сотни раз большее количество примеси p-типа, чем количество n-пpимеси в n-области. Поэтому прямой ток через p-n-пеpеход будет состоять почти исключительно из дырок, движущихся слева направо. Попав в n-область триода, дырки, совершающие тепловое движение, диффундируют по направлению к n-p-переходу, но частично успевают претерпеть рекомбинацию со свободными электронами n-области. Но если n-область узка и свободных электронов в ней не слишком много (не ярко выраженный проводник n-типа), то большинство дырок достигнет второго перехода и, попав в него, переместится его полем в правую p-область. У хороших триодов поток дырок, проникающих в правую p-область, составляет 99% и более от потока, проникающего слева в n-область.

Если при отсутствии напряжения между точками з и б обратный ток в n-p-переходе очень мал, то после появления напряжения на зажимах з и б этот ток почти так же велик, как прямой ток в левом переходе. Таким способом можно управлять силой тока в правом (запертом) n-p-переходе с помощью левого p-n-перехода. Запирая левый переход, мы прекращаем ток через правый переход; открывая левый переход, получаем ток в правом переходе. Изменяя величину прямого напряжения на левом переходе, мы будем изменять тем самым силу тока в правом переходе. На этом и основано применение p-n-p-триода в качестве усилителя.


При работе триода (рис) к правому переходу подключается сопротивление нагрузки R и с помощью батареи Б подаётся обратное напряжение (десятки вольт), запирающее переход. При этом через переход протекает очень малый обратный ток, а всё напряжение батареи Б прикладывается к n-p-переходу. На нагрузке же напряжение равно нулю. Если подать теперь на левый переход небольшое прямое напряжение, то через него начнёт протекать небольшой прямой ток. Почти такой же ток начнёт протекать и через правый переход, создавая падения напряжения на сопротивлении нагрузки R. Напряжение на правом n-p-переходе при этом уменьшается, так как теперь часть напряжения батареи падает на сопротивлении нагрузки.

При увеличении прямого напряжения на левом переходе увеличивается ток через правый переход и растёт напряжение на сопротивлении нагрузки R. Когда левый p-n-переход открыт, ток через правый n-p-переход делается настолько большим, что значительная часть напряжения батареи Б падает на сопротивлении нагрузки R.

Таким образом, подавая на левый переход прямое напряжение, равное долям вольта, можно получить большой ток через нагрузку, причём напряжение на ней составит значительную часть напряжения батареи Б, т.е. десятки вольт. Меняя напряжение, подводимое к левому переходу, на сотые доли вольта, мы изменяем напряжение на нагрузке на десятки вольт. таким способом получают усиление по напряжению.

Усиления по току при данной схеме включения триода не получается, так как ток, идущий через правый переход, даже немного меньше тока, идущего через левый переход. Но вследствие усиления по напряжению здесь происходит усиление мощности. В конечном счете усиление по мощности происходит за счёт энергии источника Б.

Действие транзистора можно сравнить с действием плотины. С помощью постоянного источника (течения реки) и плотины создан перепад уровней воды. Затрачивая очень небольшую энергию на вертикальное перемещение затвора, мы можем управлять потоком воды большой мощности, т.е. управлять энергией мощного постоянного источника.

Переход, включаемый в проходном направлении (на рисунках - левый), называется эмиттерным, а переход, включаемый в запирающем направлении (на рисунках - правый) - коллекторным. Средняя область называется базой, левая - эмиттером, а правая - коллектором. Толщина базы составляет лишь несколько сотых или тысячных долей миллиметра.

Срок службы полупроводниковых триодов и их экономичность во много раз больше, чем у электронных ламп. За счёт чего транзисторы нашли широкое применение в микроэлектронике - теле-, видео-, аудио-, радиоаппаратуре и, конечно же, в компьютерах. Они заменяют электронные лампы во многих электрических цепях научной, промышленной и бытовой аппаратуры.

Преимущества транзисторов по сравнению с электронными лампами - те же, как и у полупроводниковых диодов - отсутствие накалённого катода, потребляющего значительную мощность и требующего времени для его разогрева. Кроме того транзисторы сами по себе во много раз меньше по массе и размерам, чем электрические лампы, и транзисторы способны работать при более низких напряжениях.

Но наряду с положительными качествами, триоды имеют и свои недостатки. Как и полупроводниковые диоды, транзисторы очень чувствительны к повышению температуры, электрическим перегрузкам и сильно проникающим излучениям (чтобы сделать транзистор более долговечным, его запаковывают в специальный “футляр”).

Основные материалы из которых изготовляют триоды - кремний и германий.

Полевые МДП транзисторы.

Полевым транзистором (ПТ) называют трехэлектродный полупроводниковый прибор, в котором электрический ток создают основные носители заряда под действием продольного электрического поля, а управление током осуществляется поперечным электрическим полем, создаваемым напряжением на управляющем электроде.

В последние годы большое место в электронике заняли приборы, использующие явления в приповерхностном слое полупроводника. Основным элементом таких приборов является структура Металл-Диэллектрик-Полупроводник /МДП/. В качестве диэлектрической прослойки между металлом и полупроводником часто используют слой оксида, например диоксид кремния. Такие структуры носят название МОП-структур. Металлический электрод обычно наносят на диэлектрик вакуумным распылением. Этот электрод называется затвором.

ПТ являются униполярными полупроводниковыми приборами, так как их работа основана на дрейфе носителей заряда одного знака в продольном электрическом поле через управляемый канал n- или p-типа. Управление током через канал осуществляется поперечным электрическим полем, а не током, как в биполярных транзисторах. Поэтому такие транзисторы называются полевыми.

Полевые транзисторы с затвором в виде p-n перехода в зависимости от канала делятся на ПТ с каналом p-типа и n-типа. Канал p-типа обладает дырочной проводимостью, а n-типа – электронной.


Если на затвор подать некоторое напряжение смещения относительно полупроводника, то у поверхности полупроводника возникает область объемного заряда, знак которой противоположен знаку заряда на затворе. В этой области концентрация носителей тока может существенно отличаться от их объемной концентрации.

Заряжение приповерхностной области полупроводника приводит к появлению разности потенциалов между нею и объемом полупроводника и, следовательно, к искривлению энергетических зон. При отрицательном заряде на затворе, энергетические зоны изгибаются вверх, так как при перемещении электрона из объема на поверхность его энергия увеличивается. Если затвор заряжен положительно то зоны изгибаются вниз.


Hа рисунке показана зонная структура n-полупроводника при отрицательном заряде на затворе и приведены обозначения основных величин, характеризующих поверхность; разность потенциалов между поверхностью и объемом полупроводника; изгиб зон у поверхности; середина запрещенной зоны. Из рисунка видно, что в объеме полупроводника расстояние от дна зоны проводимости до уровня Ферми меньше расстояния от уровня Ферми до потолка валентной зоны. Поэтому равновесная концентрация электронов больше концентрации дырок: как и должно быть у n-полупроводников. В поверхностном слое объемного заряда происходит искривление зон и расстояния от дна зоны проводимости до уровня Ферми по мере перемещения к поверхности непрерывно увеличивается, а расстояние до уровня Ферми до потолка валентной зоны непрерывно уменьшается.

Часто изгиб зон у поверхности выражают в единицах kT и обозначают Ys. Тогда при формировании приповерхностной области полупроводника могут встретиться три важных случая: обеднение, инверсия и обогащение этой области носителями заряда. Эти случаи для полупроводников n- и p-типа представлены на рис.

Обедненная область появляется в том случае, когда заряд затвора по знаку совпадает со знаком основных носителей тока. Вызванный таким зарядом изгиб зон приводит к увеличению расстояния от уровня Ферми до дна зоны проводимости в полупроводнике n-типа и до вершины валентной зоны в полупроводнике p-типа. Увеличение этого расстояния сопровождается обеднением приповерхностной области основными носителями. При высокой плотности заряда затвора, знак которого совпадает со знаком заряда основных носителей, по мере приближения к поверхности расстояние от уровня Ферми до потолка валентной зоны в полупроводнике n-типа оказывается меньше расстояния до дна зоны проводимости. Вследствие этого, концентрация не основных носителей заряда /дырок/ у поверхности полупроводника становится выше концентрации основных носителей и тип проводимости этой области изменяется, хотя и электронов и дырок здесь мало, почти как в собственном полупроводнике. У самой поверхности, однако, не основных носителей может быть столько же или даже больше, чем основных в объеме полупроводника. Такие хорошо проводящие слои у поверхности с типом проводимости, противоположным объемному, называют инверсионными. К инверсионному слою вглубь от поверхности примыкает слой обеднения.

Если знак заряда затвора противоположен знаку заряда основных носителей тока в полупроводнике, то под его влиянием происходит притяжение к поверхности основных носителей и обогащение ими приповерхностного слоя. Такие слои называются обогащенными.

В интегральной электронике МДП-структуры широко используются для создания транзисторов и на их основе различных интегральных микроcхем. На рис. схематически показана структура МДП-транзистора с изолированным затвором. Транзистор состоит из кристалла кремния /например n-типа/, у поверхности которого диффузией /или ионной имплантацией/ в окна в оксиде формируются р-области, как показано на рис. Одну из этих областей называют истоком, другую - стоком. Сверху на них наносят омические контакты. Промежуток между областями покрывают пленкой металла, изолированной от поверхности кристалла слоем оксида. Этот электрод транзистора называют затвором. Hа границе между р- и n-областями возникают два р-n-перехода - истоковый и стоковый, которые на рисунке. показаны штриховкой.

Hа рис. приведена схема включения транзистора в цепь: к истоку подсоединяют плюс, к стоку - минус источника напряжения, к затвору - минус источника. Для простоты рассмотрения будем считать, что контактная разность потенциалов, заряд в оксиде и поверхностные состояния отсутствуют. Тогда свойства поверхностной области, в отсутствие напряжения на затворе, ничем не отличаются от свойств полупроводников в объеме. Сопротивление между стоком и истоком очень велико, так как стоковый р-n-переход оказывается под обратным смещением. Подача на затвор отрицательного смещения сначала приводит к образованию под затвором обедненной области, а при некотором напряжении называемом пороговым, - к образованию инверсионной области, соединяющей p-области истока и стока проводящим каналом. При напряжениях на затворе выше канал становится шире, а сопротивление сток-исток - меньше. Рассматриваемая структура является, таким образом, управляемым резистором.

Однако сопротивление канала определяется только напряжением на затворе лишь при небольших напряжениях на стоке. С увеличением носители из канала уходят в стоковую область, обедненный слой у стокового n-p-перехода расширяется и канал сужается. Зависимость тока от напряжения на стоке становится нелинейной.

При сужении канала число свободных носителей тока под затвором уменьшается по мере приближения к стоку. Чтобы ток в канале был одним и тем же в любом его сечении, электрическое поле вдоль канала должно быть, в таком случае, неоднородным, его напряженность должна расти по мере приближения к стоку. Кроме того, возникновение градиента концентрации свободных носителей тока вдоль канала приводит к возникновению диффузионной компоненты плотности тока.

При некотором напряжении на стоке канал у стока перекрывается, при еще большем смещении канал укорачивается к истоку. Перекрытие канала однако не приводит к исчезновению тока стока, поскольку в обедненном слое, перекрывшем канал, электрическое поле тянет дырки вдоль поверхности. Когда носители тока из канала вследствие диффузии попадают в эту область, они подхватываются полем и перебрасываются к стоку. Таким образом, по мере увеличения напряжения на стоке чисто дрейфовый механизм движения носителей тока вдоль канала сменяется диффузионно-дрейфовым.

Механизм протекания тока в МДП-транзисторе при сомкнутом канале имеет некоторые общие черты с протеканием тока в обратно-смещенном n-p-переходе. Напомним, что в n-p-переходе неосновные носители тока попадают в область пространственного заряда перехода вследствие диффузии и затем подхватываются его полем.

Как показывают теория и эксперимент, после перекрытия канала ток стока практически насыщается. Значение тока насыщения зависит от напряжения на затворе чем выше, тем шире канал и тем больше ток насыщения. Это типично транзисторный эффект - напряжением на затворе (во входной цепи) можно управлять током стока (током в выходной цепи). Характерной особенностью МДП-транзисторов является то, что его входом служит конденсатор, образованный металлическим затвором, изолированным от полупроводника.

На границе раздела полупроводник - диэлектрик в запрещенной зоне полупроводника существуют энергетические состояния, называемые поверхностными или, точнее, состояниями граници раздела. Волновые функции электронов в этих состояниях локализованы вблизи поверхности раздела в областях порядка постоянной решетки. Причина возникновения рассматриваемых состояний состоит в неидеальности граници раздела полупроводник - диэллектрик (оксид). На реальных границах раздела всегда имеется некоторое количество оборванных связей и нарушается стехиометрия состава оксидной пленки диэллектрика. Плотность и характер состояний граници раздела существенно зависят от технологии создания диэллектрической пленки.

Наличие поверхностных состояний на границе раздела полупроводник-диэллектрик отрицательно сказывается на параметрах МДП-транзистора, так как часть заряда, наведенного под затвором в полупроводнике, захватывается на эти состояния. Успех в создании полевых транзисторов рассматриваемого типа был достигнут после отработки технологии создания пленки на поверхности кремния с малой плотностью состояний границы раздела.

В самом оксиде кремния всегда существует положительный "встроенный" заряд, природа которого до сих пор до конца не выяснена. Значение этого заряда зависит от технологии изготовления оксида и часто оказывается настолько большим, что если в качестве подложки используется кремний р-типа проводимости, то у его поверхности образуется инверсионный слой уже при нулевом смещении на затворе. Такие транзисторы называются транзисторами со ВСТРОЕННЫМ КАНАЛОМ. Канал в них сохраняется даже при подаче на затвор некоторого отрицательного смещения. В отличие от них в транзисторах, изготовленных на n-подложке, в которой для образования инверсионного слоя требуется слишком большой заряд оксида, канал возникает только при подаче на затвор напряжения, превышающего некоторое пороговое напряжение. По знаку это смещение на затворе должно быть отрицательным для транзисторов с n-подложкой и положительным в случае p-подложки.

При больших напряжениях на стоке МДП-транзистора область объемного заряда от стоковой области может распространиться настолько сильно, что канал вообще исчезнет. Тогда к стоку устремятся носители из сильно легированной истоковой области, точно так же как при "проколе" базы биполярного транзистора.

Литература:

"Твердотельная электроника" Г.И.Епифанов, Ю.А.Мома.

“Электроника и Микросхемотехника” В.А. Скаржепа, А.Н. Луценко.