Фазовые детекторы. Принципы работы и схемы ФД

  • 11.08.2023

Цифровые детектры - 2 -

ИМПУЛЬСНЫЕ И ЦИФРОВЫЕ ДЕТЕКТОРЫ

В большинстве современных радиоэлектронных систем приемные устройства представляют собой весьма сложную структуру, реализующую обработку аналого­вых сигналов цифровыми методами. Одним из основных их элементов являются импульсные и цифровые детекторы.

Фазовый детектор на логических элементах

Такие детекторы выполняют на дискретных логических элементах, и их часто называют импульсными. В фазовых детекторах на логических элементах ФМ-колебание преобразуется в импульсное напряжение, скважность импуль­сов которого зависит от фазы входного сигнала.

На рис. 6.25, а приведена схема фазового детектора, а на рис. 6.25, б - е диаграммы, поясняющие его работу.

Импульсный фазовый детектор имеет два входа, на один из них пода­ется ФМ-сигнал u ФМ (t ) = u ФМ (рис. 6.25, б), на другой - опорное напря­жение u ОП (t ) = u ОП (рис. 6.25, г). ФМ-сигнал и опорное напряжение по­ступают на формирующие устройства УФ 1 и УФ 2 соответственно, в качестве которых и используются компараторы. На выходах УФ возника­ют последовательности прямоугольных импульсов u 1 и u 2 (рис 6.25, в, д), длительности которых равны соответственно полупериодам входных коле­баний - ФМ-сигнала и опорного напряжения. Сформированные им­пульсные напряжения u 1 и u 2 поступают на логическое звено И, в качестве которого используются логический элемент И-НЕ. Импульсное напряжение u и амплитудой U 0 на выходе этого звена формируется только при одновременном действии напряжений u 1 и u 2 (рис. 6.25, е) ФНЧ вы­деляет из этого напряжения постоянную составляющую, амплитуда кото­рого U c определяется формулой (ее нетрудно вывести):

Согласно (6.16), выходное напряжение U c фазового детектора на ло­гических элементах линейно зависит от сдвига фазы ФМ-сигнала относи­тельно фазы опорного напряжения.

Цифровой фазовый детектор

Проанализируем процессы детектирования так называемого знакового сигнала, представляющего собой последовательность потенциальных импульсов («еди­ниц») и пауз («нулей»). Простейшими аналогами таких колебаний являются сиг­налы с ШИМ, или ФИМ.

Рассмотрим фазовое детектирование периодической Последовательности прямоугольных импульсов. Заметим, что задержка на некоторое время τ пе­риодического сигнала с периодом следования Т эквивалентна повороту его фазы на определенный угол φ = 2πτ /T . Простейшая схема цифрового фазового детектора (ЦФД) приведена на рис. 6.26, а.

ЦФД выполнен на интегральном JK -триггере, к выходу которого под­ключен фильтр нижних частот в виде интегрирующей RC -цепи. На рис. 6.26, б показаны временные диаграммы напряжений знакового сигнала u ФМ (отра­жающего ФМ-колебание), тактовой последовательности импульсов u оп (т. е. опорного напряжения, с фазой которого сравнивается фаза знакового сигна­ла) и сигнал U (t ) на выходе ЦФД. Импульсный сигнал Q на выходе JK - триггера соответствует его таблице истинности.

Как следует из диаграмм напряжений, длительность выходных импульсов триггера пропорциональна временному (а, значит, и фазовому) сдвигу между колебаниями u ФМ и u оп. Напряжение на выходе ЦФД U (t ) образуется сглажи­ванием импульсов Q в ФНЧ.

Цифровые фазовые детекторы могут быть построены не только на инте­гральном JK - триггере, но и на других логических схемах: элементе «Исключающее ИЛИ», RS - триггере и пр. С помощью этих схем достаточно просто удается получить длительность выходных импульсов, прямо пропорциональную временной задержке между сигналами u ФМ и u оп, после чего сгладить эти импульсы в ФНЧ. На рис. 6.27, а в качестве примера приведена схема ЦФД на элементе «Исключающее ИЛИ» (Сумматор по модулю два ). Временные диаграммы работы ЦФД показаны на рис. 6.27, б. В этой схеме импульсное напряжение у, сформированное в схеме «Исключающее ИЛИ», подается на ФНЧ. Напряжение U (t ) на выходе ФНЧ пропорционально сдвигу ФМ-сигнала относительно опорного u оп. Этот детектор более помехо­устойчив, чем ЦФД на триггере. Дело в том, что триггеры срабатывают по фронтам импульсов, поэтому в случае «дребезга» этих фронтов выходной сигнал ЦФД может оказаться существенно искаженным. Напротив, схема «Исключающее ИЛИ» работает по уровням входных сигналов, поэтому короткие шумовые или помеховые импульсы, приводящие к «дребезгу» фронтов этих сиг­налов, не могут заметно исказить выходное напряжение.

Фазовый детектор — это устройство, сравнивающее фазы двух сигналов равных или близких частот. Фазовый детектор формирует напряжение, пропорциональное разности фаз.

Для определения фазы неизвестного колебания требуется точка отсчета, которая будет определять начало координат. Обычно в качестве такой точки отсчета выступает опорное синусоидальное колебание, вырабатываемое местным генератором (гетеродином). При этом для выделения фазы можно воспользоваться тригонометрическим тождеством:

При условии равенства частот принимаемого сигнала и гетеродина формула преобразуется к виду:

(2)

Напряжение с удвоенной частотой принимаемого сигнала (удвоенной промежуточной частотой) на выходе фазового детектора легко подавляется фильтром низких частот и в дальнейшем анализе не учитывается:

(3)

Учитывая, что синус малого угла равен значению самого угла, на выходе аналогового умножителя сигналов присутствует напряжение, пропорциональное фазе принимаемого сигнала. Иначе говоря, в качестве фазового детектора может выступать , к одному из входов которого подключен генератор с частотой, равной частоте принимаемого сигнала.

К сожалению, из той же формулы напряжения на выходе умножителя сигналов видна зависимость выходного напряжения от амплитуды входного сигнала и сигнала местного генератора (гетеродина). Поэтому перед детектированием фазомодулированного сигнала в фазовом детекторе напряжение входного сигнала должно быть ограничено по амплитуде.

В ряде схем фазовых детекторов в результате ограничения или по ряду других причин (синтезатор частот, умножитель тактовой частоты) применяются сигналы с логическими уровнями. В этом случае в качестве можно применить .

Структурная схема фазового детектора, реализованная по описанному выше принципу, приведена на рисунке 1.



Рисунок 1. Структурная схема фазового детектора

Форма напряжения на выходе ограничителя амплитуды приближается к прямоугольной форме сигнала со скважностью равной двум. Напряжение (или ток) на выходе местного генератора (гетеродина) тоже стараются получить прямоугольной формы. Для более точного формирования прямоугольного сигнала гетеродина с равной длительностью положительного и отрицательного значения достаточно часто применяют генератор с удвоенной частотой. Затем понижают ее на двоичном делителе (T-триггере). В результате формула (3) преобразуется к следующему виду:

(4)

Линейный участок передаточной характеристики фазового детектора в результате применения прямоугольных колебаний расширяется до диапазона . Пример передаточной характеристики фазового детектора AD9901 приведен на рисунке 2.



Рисунок 2. Передаточная характеристика фазового детектора AD9901

Отклонение передаточной характеристики от линейного закона в микросхеме вызвано ее конечным быстродействием.

Дата последнего обновления файла 16.12.2017

Литература:

  1. "Проектирование радиоприемных устройств" под ред. А.П. Сиверса М., "Высшая школа" 1976 стр. 37 ... 110
  2. "Радиоприемные устройства" под ред. Жуковского М. "Сов. радио" 1989 стр. 8 ... 10
  3. Палшков В.В. "Радиоприемные устройства" - М.: "Радио и связь" 1984 стр. 12 ... 14

Вместе со статьей "Фазовый детектор (демодулятор)" читают:

Фазовым детектором (ФД) называют устройство, служащее для создания напряжения, изменяющегося в соответствии с законом изменения фазы входного напряжения.

Если на входе ФД действует напряжение

то продетектированное напряжение .

Положим, на входе ФД действует напряжение (рис.111, а ), тогда напряжение на выходе ФД должно иметь вид рис.111, б .

Рисунок 111 – Графики напряжений на входе и выходе ФД

Рассмотренный случай является типичным для фазового телеграфирования, при котором начальные фазы паузы и посылки отличаются на 180°.

При ФМ фаза плавно изменяется в соответствии с передаваемой информацией. Так как в спектре напряжения на выходе ФД имеются частотные составляющие, которых не было в спектре напряжения , то для реализации ФД нельзя использовать линейную систему с постоянными параметрами.

Фазовое детектирование нельзя также осуществлять с помощью безынерционной нелинейной системы. Например, постоянная составляющая тока диодного детектора зависит только от амплитуды входного напряжения и не зависит от его фазы и частоты. Поэтому ФД можно выполнять на основе линейной системы с переменными параметрами (параметрической системы).

Структурная схема ФД показана на рис.112. Эта схема совпадает со структурной схемой преобразователя частоты; отличие состоит лишь в том, что частота гетеродина (опорное напряжение )

Под действием опорного напряжения меняется активный параметр схемы, обычно крутизна .

Рисунок 112 – Структурная схема ФД

Схема ФД совпадает также со схемой параметрического АД, поэтому продетектированное напряжение на выходе ФД

, (12.1)

где - амплитуда первой гармоники крутизны тока преобразовательного элемента;

В зависимости от вида нелинейной цепи и способа ее включения различают однотактные, балансные и кольцевые ФД.

В качестве нелинейного элемента используют диоды и транзисторы.

Виды фазовых детекторов

Однотактный диодный ФД. Детектор выполнен по однотактной схеме (рис.113).

Рисунок 113 – Однотактный диодный ФД

Для осуществления фазового детектирования к диоду прикладывается входной сигнал и опорное напряжение; напряжение на выходе ФД определяется выражением (12.1), полученным при .

Характеристика детектирования диодного ФД, согласно (12.1), близка к косинусоиде.

Принцип действия ФД по схеме рис.112 можно пояснить, рассматривая его не как параметрическую цепь, а как систему с амплитудным детектированием суммы двух гармонических колебаний () (рис.114, а ).

На входе такого АД действует суммарное напряжение

Рисунок 114 – К вопросу принципа действия ФД

Эти два колебания имеют одинаковую частоту, но разные фазы.

В результате векторного сложения двух напряжений (рис.114, б ) получают напряжение той же частоты, но другой фазы.

Амплитуда суммарного колебания

.

Напряжение на выходе АД с коэффициентом передачи

Согласно (12.2), напряжение на выходе ФД зависит от входного сигнала; вид зависимости от определяется отношением .

В общем случае характеристика детектирования существенно отличается от косинусоиды (рис.115, а ).

Рисунок 115 – Характеристики детектирования ФД

Если , то

Таким образом, при малых амплитудах входного сигнала характеристика детектирования однотактного диодного ФД имеет косинусоидальную форму.

Если , то

в этом случае характеристика детектирования представляет собой циклоиду (рис.115, б ), сильно отличающуюся от косинусоиды.

Балансный ФД. Такой ФД представляет собой два диодных однотактных ФД (рис.116), каждый из которых работает на свою нагрузку.

Рисунок 116 – Балансный ФД

В результате этого на выходе каждого плеча ФД создается напряжение и встречной полярности, поэтому

.

Входное напряжение подводится к диодам в противоположной полярности, поэтому фаза напряжения отличается на 180°.

В параграфе 7.4 были рассмотрены цифровые синтезаторы с косвенным синтезом частоты, одним из главных элементов которых можно назвать фазовый дискриминатор. Аналогичные устройства применяют в любых цифровых системах фазовой автоподстройки частоты, используемых как для синтеза колебаний с постоянной частотой, так и для частотной или фазовой модуляции и демодуляции ВЧ сигналов. Параметры фазового дискриминатора определяют наивысшую рабочую частоту или частоту сравнения петли ФАПЧ, а также такие важнейшие показатели, как ширина полосы захвата и полосы удержания петли ФАПЧ.

В цифровых системах ФАПЧ, в основном, используют следующие виды фазовых дискриминаторов:

· фазовый детектор (ФД) на логическом элементе «Исключающее ИЛИ»;

· фазовый детектор на RS-триггере или JK-триггере;

· цифровой частотно-фазовый детектор (ЧФД).

Первые два типа детекторов характеризуются тем, что на их выходе присутствует постоянное напряжение, пропорциональное сдвигу фаз при равенстве частот входного и опорного сигналов, и биения, частота которых зависит от разности частот этих сигналов, если эти частоты не равны. При этом биения могут иметь в некотором диапазоне расстроек постоянную составляющую, приводящую петлю ФАПЧ в конце концов к захвату частоты входного сигнала, но при достаточно большой частотной расстройке биения становятся практически гармоническими и захват частоты является уже невозможным. Ясно, что при этом полоса захвата системы уже полосы удержания. Рисунок 7.7.1 иллюстрирует процесс захвата частоты системой ФАПЧ с ФД на логическом элементе «Исключающее ИЛИ» (показана зависимость выходного напряжения ФД от времени, полученная путем моделирования работы петли ФАПЧ на ЭВМ). В данном случае начальная расстройка частоты ГУН настолько велика, что биения выходного напряжения ФД являются чисто гармоническими и их постоянная составляющая равна нулю, т.е. ФД не оказывает подстраивающего действия на ГУН (левая часть рисунка). На ГУН подается внешнее управляющее воздействие, медленно сдвигающее его частоту к значению, при котором возможен захват его частоты петлей ФАПЧ; при этом форма биений выходного колебания ФД начинает отличаться от гармонической, появляется постоянная составляющая, оказывающая воздействие на среднее значение частоты ГУН (средняя часть рисунка). В какой-то момент частота ГУН попадает в полосу захвата петли ФАПЧ – и происходит захват: после короткого переходного процесса на выходе ФД устанавливается постоянное напряжение, пропорциональное разности фаз опорного колебания и колебания ГУН, поступающих на ФД (правая часть рисунка).

В отличие от фазовых детекторов, у частотно-фазового детектора при любых частотных расстройках на выходе нет биений, но присутствует постоянное напряжение, подстраивающее регулируемый генератор так, чтобы уменьшить эту расстройку. Таким образом, выходное напряжение ЧФД является функцией как разности фаз (в синхронном режиме), так и разности частот (в случае отсутствия синхронизма) поступающих на него колебаний. Благодаря этому в системе ФАПЧ, содержащей цифровой частотно-фазовый детектор, полоса захвата равна полосе удержания.

На рис.7.7.2 показана структура простейшего цифрового ЧФД, построенного на двух D-триггерах. Состояния их выходов определяют работу транзисторных ключей VT1, VT2 следующим образом.

Q1=1, Q2=1 - элемент «логическое И» DD3 выставляет на своем выходе логическую 1, которая через устройство задержки подается на входы CLR триггеров, сбрасывая их выходы в 0.

Q1=0, Q2=0 - оба ключа разомкнуты, выход ЧФД - в третьем состоянии.

Q1=1, Q2=0 - ключ VT1 замкнут, VT2 разомкнут, на выходе ЧФД напряжение, близкое к напряжению питания, что соответствует логической 1.

Q1=0, Q2=1 - ключ VT1 разомкнут, VT2 замкнут, на выходе ЧФД напряжение, близкое к нулю, что соответствует логическму 0.

Рассмотрим поведение схемы в случае, когда частота сигнала на Входе 1 выше частоты на Входе 2, рис.7.7.3А. Из рисунка видно, что при этом единица на выходе ЧФД будет появляться чаще, чем 0 (триггеры срабатывают по положительному фронту на синхровходе), и частота ГУН будет подтягиваться выше, к частоте опорного генератора (предполагается, что ГУН выполнен с использованием варикапа). Это будет продолжаться до тех пор, пока частоты не станут равными, что приведет к захвату частоты ГУН. В случае, когда в исходном состоянии частота ГУН значительно выше частоты опорного генератора, на выходе ЧФД будет преобладать 0, понижая частоту ГУН вплоть до ее захвата петлей ФАПЧ.

Современные ЧФД выпускаются в виде ИМС, и могут работать на частотах до 200 МГц, что позволяет их использовать в ПЧ трактах радиопередающих устройств современных стандартов связи. Они имеют средства для устранения зоны нечувствительности по фазе, расположенной в центре фазовой характеристики. Примером современной микросхемы ЧФД может послужить AD9901, структура которой представлена на рис. 7.7.4. Принципиально она отличается от рассмотренной выше (рис. 7.7.2) наличием делителей частоты входных сигналов на D-триггерах. Они обеспечивают фазовому дискриминатору, выполненному на элементе «Исключающее ИЛИ», прямоугольные колебания для улучшения его работы, а также сдвигают зону нечувствительности из центра фазовой характеристики на ее края.

Вид характеристики такого ЧФД показан на рис. 7.7.5, где видны зоны нечувствительности и нелинейности в зависимости от рабочей частоты детектора. Отметим, что на частотах в сотни кГц эта характеристика имеет линейный участок протяженностью на все 360°.

Существуют две разновидности ЧФД, различающиеся по способу построения их выходных каскадов: ЧФД с выходом по напряжению (рис. 7.7.4) и ЧФД с выходом по току; последний вариант чаще называют схемой подкачки заряда или «зарядовым насосом» (или СР - charge pump), о применении которого в схеме петли ФАПЧ уже упоминалось в параграфе 7.4. Заменив транзисторы VT1 и VT2 на рис. 7.7.2 на источники тока, как это показано на рис. 7.7.6, получаем схему ЧФД charge pump в обобщенном виде .

От того, какие импульсы – тока или напряжения - вырабатывает схема ЧФД, зависит тип подключаемого к выходу ЧФД петлевого фильтра; соответственно, различаются и характеристики всей петли ФАПЧ. На рис. 7.7.7 приведены часто встречающиеся варианты схем петлевых фильтров для «токового» и «потенциального» вариантов исполнения выходных каскадов ЧФД. Для улучшения фильтрующих свойств петлевого фильтра по отношению к импульсным помехам, проникающим с выхода ЧФД на управляющий вход ГУН, иногда применяют дополнительное фильтрующее звено (ДФЗ), элементы которого выделены на нижней схеме рисунка пунктиром. Операционный усилитель, включенный между петлевым фильтром и управляющим входом ГУН, служит буферным каскадом, уменьшающим нагрузку на фильтр со стороны входа ГУН. Сам операционный усилитель должен иметь при этом минимальный входной ток (пикоамперы) и низкий уровень собственных шумов. Напомним (см. параграф 7.4 и рис. 7.4.3), что токи утечки, возникающие в элементах (емкостях) петлевого фильтра или же ток нагрузки со стороны управляющего входа ГУН приводят к проникновению нежелательных составляющих с частотой сравнения и ее гармоник в спектр колебания ГУН.

Отдельно следует сказать о работе петли ФАПЧ, в которой применяется ЧФД с токовым выходом «charge pump», нагруженным на петлевой фильтр, в состав которого входит идеальное интегрирующее звено. В параграфе 7.4 уже было отмечено, что в этом случае петля ФАПЧ приобретает свойство астатизма, т.е. фазовая ошибка в установившемся синхронном режиме не зависит от начальной частотной расстройки ГУН относительно колебания опорного генератора и, в идеальном случае, всегда стремится к нулю. Покажем это на примере схемы, изображенной на рис. 7.7.6.

Пусть петля ФАПЧ имеет простейшую структуру, подобную изображенной на рис.7.7.3; это не снижает общности наших рассуждений. На Входе 1 ЧФД присутствует колебание опорного генератора с постоянной частотой w ОП = рj ОП (где р = d / dt – оператор дифференцирования, j ОП – линейно возрастающая полная фаза опорного колебания). На Входе 2 ЧФД присутствует, в свою очередь, колебание ГУН с частотой, зависящей от Е УПР (р) - управляющего воздействия ЧФД, передающегося через петлевой фильтр:

w ГУН = рj ГУН = w ГУН СВ. – 2pS ГУН Е УПР (р),

где j ГУН – полная фаза колебания ГУН, w ГУН СВ. – значение частоты ГУН без управляющего воздействия от ЧФД («свободное»), S ГУН – крутизна линейного участка статической модуляционной характеристики ГУН.

Основными параметрами ФД являются

Фазовые детекторы

Фазовые детекторы применяются для преобразования разности фаз двух сигналов в соответствующее напряжение . Приемник может принимать оба или одно из колебаний. Во втором случае на фазовый детектор (ФД), кроме принимаемого подается еще местный, опорный сигнал. Напряжение на выходе ФД, соответствующее разности фаз сравниваемых колебаний, получают путем их перемножения в схемах, аналогичным преобразователям частоты и синхронным детекторам. Частоты обеих колебаний должны быть одинаковыми. Нагрузкой ФД служит фильтр нижних частот (ФНЧ).

Если на схему умножителя (рис. 3.35) подать полезный сигнал

и вспомогательный сигнал той же частоты

ток на его выходе получается пропорциональным произведению воздействующих сигналов

Напряжение удвоенной частоты на выходе ФНЧ близко к нулю и его можно не учитывать. Постоянная составляющая напряжения на выходе ФНЧ (например, на RC фильтре)

зависит от разности фаз сравниваемых колебаний.

Амплитудно-фазовая или статическая характеристика ФД представляет собой зависимость выходного напряжения от разности фаз между сигналом и опорным напряжением

Вид амплитудно-фазовой характеристики (рис. 3.36) определяется типом и параметрами схемы ФД. Она также зависит от значений амплитуды и. Специфичной особенностью этой характеристики является ее периодичность, т.е. при возрастании значений она будет повторяться с периодом.

Рисунок 3.36 - Амплитудно-фазовая характеристика фазового детектора

Крутизна характеристики ФД представляет собой производную выходного напряжения по фазовому углу, вычисленную при заданных значениях амплитуды напряжения сигнала и опорного в точке, где эта производная максимальна

Коэффициент передачи ФД представляет собой отношение величины выходного сигнала при заданном значении разности фаз между подводимыми напряжениями

По своему схемному решению ФД могут быть:

Однотактными;

Балансными (двухтактными);

Кольцевыми;

Ключевыми и т.д.

Схема однотактного ФД представлена на рис. 3.37.

Рисунок 3.37- Однотактный фазовый детектор

Схема однотактного ФД отличается от обычного диодного амплитудного детектора тем, что на диод воздействует сумма двух высокочастотных сигналов. Положим, что

В схеме рис. 3.37а диод, R и C действуют как амплитудный детектор с коэффициентом передачи.

Напряжение на выходе ФД составляет

Как следует из рис. 3.36 зависимость выходного напряжения от разности фаз оказывается нелинейной. Только на небольшом участке в районе детекторную характеристику практически можно считать линейной.



Схема балансного ФД (рис. 3.38а) состоит из двух однотактных фазовых детекторов, выходные цепи которых включены навстречу. Поэтому работа схемы в принципе не отличается от работы однотактного ФД.

Рисунок 3.38 – Балансный фазовый детектор

При выполнения условия детекторная характеристика ФД становится практически линейной (рис. 3.38б).