Как работает лампа накаливания. Устройство и принцип действия лампы накаливания

  • 01.11.2023

Лампа накаливания — осветительный прибор, искусственный источник света. Свет испускается нагретой металлической спиралью при протекании через неё электрического тока.

Принцип действия

В лампе накаливания используется эффект нагревания проводника (нити накаливания) при протекании через него электрического тока. Температура вольфрамовой нити накала резко возрастает после включения тока. Нить излучает электромагнитное излучение в соответствии с законом Планка . Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина ). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 6000 K (температура поверхности Солнца ). Чем меньше температура, тем меньше доля видимого света и тем более «красным» кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Идеальная температура в 6000 K недостижима, т. к. при такой температуре любой материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления — вольфрам (3410 °C) и, очень редко, осмий (3045 °C).

При практически достижимых температурах 2300—2900 °C излучается далеко не белый и не дневной свет. По этой причине лампы накаливания испускают свет, который кажется более «желто-красным», чем дневной свет. Для характеристики качества света используется т. н. цветовая температура.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине вольфрамовая нить защищена стеклянной колбой, заполненной нейтральным газом (обычно аргоном). Первые лампочки делались с вакуумированными колбами. Однако в вакууме при высоких температурах вольфрам быстро испаряется, делая нить тоньше и затемняя стеклянную колбу при осаждении на ней. Позднее колбы стали заполнять химически нейтральными газами. Вакуумные колбы сейчас используют только для ламп малой мощности.

Конструкция

Лампа накаливания состоит из цоколя, контактных проводников, нити накала, предохранителя и стеклянной колбы, ограждающей нить накала от окружающей среды.

Колба

Стеклянная колба защищает нить от сгорания в окружающем воздухе. Размеры колбы определяются скоростью осаждения материала нити. Для ламп большей мощности требуются колбы большего размера, для того чтобы осаждаемый материал нити распределялся на большую площадь и не оказывал сильного влияния на прозрачность.

Буферный газ

Колбы первых ламп были вакуумированы. Современные лампы заполняются буферным газом (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Это уменьшает скорость испарения материала нити. Возникающие при этом, за счёт теплопроводности, потери тепла, уменьшают путём выбора газа по возможности с наиболее тяжелыми молекулами. Смеси азота с аргоном являются принятым компромиссом в смысле уменьшения себестоимости. Более дорогие лампы содержат криптон или ксенон (атомные веса: азот: 28,0134 г/моль; аргон: 39,948 г/моль; криптон: 83,798 г/моль; ксенон: 131,293 г/моль)

Нить накала

Нить накала в первых лампочках делалась из угля (точка сублимации 3559 °C). В современных лампочках применяются почти исключительно спирали из осмиево-вольфрамового сплава. Провод часто имеет вид двойной спирали, с целью уменьшения конвекции за счёт уменьшения ленгмюровского слоя.

Лампы изготавливают для различных рабочих напряжений. Сила тока определяется по закону Ома (I = U / R) и мощность по формуле P=U\cdot I, или P = U2 / R. При мощности 60 Вт и рабочем напряжении 230 В через лампочку должен протекать ток 0,26 А, т. е. сопротивление нити накала должно составлять 882 Ома. Т. к. металлы имеют малое удельное сопротивление, для достижения такого сопротивления необходим длинный и тонкий провод. Толщина провода в обычных лампочках составляет 40—50 микрон.

Т. к. при включении нить накала находится при комнатной температуре, её сопротивление много меньше рабочего сопротивления. Поэтому при включении протекает очень большой ток (в два-три раза больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу — при нагревании их сопротивление уменьшалось, и свечение медленно нарастало.

В мигающих лампочках последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампочки самостоятельно работают в мигающем режиме.

Цоколь

Форма цоколя с резьбой обычной лампы накаливания была предложена Томасом Альвой Эдисоном . Размеры цоколей стандартизированы.

Предохранитель

Плавкий предохранитель (отрезок тонкой проволоки) расположен в цоколе лампы накаливания, предназначен для предотвращения возникновения электрической дуги в момент перегорания лампы. Для бытовых ламп с номинальным напряжением 220 В такие предохранители обычно рассчитаны на ток 7 А.

КПД и долговечность

Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Для человеческого глаза, однако доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне, и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K КПД составляет 5 %.

С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. При увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим уменьшается время жизни на 95 %.

Уменьшение напряжения в два раза (напр. при последовательном включении) хотя и уменьшает КПД, но зато увеличивает время жизни почти в тысячу раз. Этим эффектом часто пользуются, когда надо обеспечить надежное дежурное освещение без особых требований к яркости, например, на лестничных площадках.

Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.

Галогенные лампы

Добавление в буферный газ галогенов брома или йода повышает время жизни лампы до 2000—4000 часов. При этом рабочая температура составляет примернно 3000 К. Эффективность галогенных ламп достигает 28 лм/Вт.

Иод (совместно с остаточным кислородом) вступает в химическое соединение с испарившимися атомами вольфрама. Этот процесс является обратимым — при высоких температурах соединение распадается на составляющие вещества. Атомы вольфрама высвобождаются таким образом либо на самой спирали, либо вблизи неё.

Добавление галогенов предотвращает осаждение вольфрама на стекле, при условии, что температура стекла больше 250 °C. По причине отсутствия почернения колбы, галогенные лампы можно изготавливать в очень компактном виде. Маленький объём колбы позволяет, с одной стороны, использовать большее рабочее давление (что опять же ведёт к уменьшению скорости испарения нити) и, с другой стороны, без существенного увеличения стоимости заполнять колбу тяжелыми инертными газами, что ведёт к уменьшению потерь энергии за счёт теплопроводности. Всё это удлиняет время жизни галогенных ламп и повышает их эффективность.

Ввиду высокой температуры колбы любые загрязнения поверхности (например, отпечатки пальцев) быстро сгорают в процессе работы, оставляя почернения. Это ведёт к локальным повышениям температуры колбы, которые могут послужить причиной её разрушения. Также из-за высокой температуры, колбы изготавливаются из кварца.

Новым направлением развития ламп является т. н. IRC-галогенные лампы (сокращение IRC обозначает «инфракрасное покрытие»). На колбы таких ламп наносится специальное покрытие, которое пропускает видимый свет, но задерживает инфракрасное (тепловое) излучение и отражает его назад, к спирали. За счёт этого уменьшаются потери тепла и, как следствие, увеличивается эффективность лампы. По данным фирмы OSRAM, потребление энергии снижается на 45 %, а время жизни удваивается (по сравнению с обычной галогенной лампой).

Хотя IRC-галогенные лампы не достигают эффективности ламп дневного света, их преимущество состоит в том, что они могут использоваться как прямая замена обычных галогенных ламп.

Специальные лампы

    Проекционные лампы — для диа- и кинопроекторов. Имеют повышенную температуру нити (и соответственно, повышенную яркость и уменьшенный срок службы); обычно нить размещают так, чтобы светящаяся область образовала прямоугольник.

    Двухнитевые лампы для автомобильных фар. Одна нить для дальнего света, другая для ближнего. Кроме того, такие лампы содержат экран, который в режиме ближнего света отсекает лучи, которые могли бы ослеплять встречных водителей.

История изобретения

    В 1854 г. немецкий изобретатель Генрих Гебель разработал первую «современную» лампочку: обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампочкой.

    11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд

    Английский изобретатель Джозеф Вильсон Сван получил в 1878 г. британский патент на лампу с угольным филаментом. В его лампах филамент находился в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.

    Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу в которой он пробует в качестве нити различные металлы. В конце-концов он возвращается к угольному волокну и создаёт лампочку с временем жизни 40 часов. Несмотря на столь непродолжительное время жизни его лампочки вытесняют использовавшееся до тех пор газовое освещение.

    В 1890-х годах Лодыгин изобретает несколько типов ламп с металлическими нитями накала.

    В 1906 г. Лодыгин продаёт патент на вольфрамовую нить компании General Electric. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.

    В 1910 г. Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.

    Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным Ирвингом Ленгмюром , который, работая с 1909 г. в фирме General Electric , придумал наполнять колбы ламп инертным газом, что существенно увеличило время жизни ламп.

Этот металл называется вольфрам. Он был открыт в конце 1781 году шведским химиком Шееле, и в течение всего 19 века ученые активно исследовали его. Сегодня человечество знает достаточно, чтобы успешно использовать вольфрам и его соединения в разных отраслях промышленности.

Вольфрам обладает переменной валентностью, что связано с особым расположением электронов на атомных орбиталях. Этот металл обычно имеет серебристо-белый цвет и обладает характерным блеском. Внешне напоминает платину.

Вольфрам можно отнести к неприхотливым металлам. Его не растворит ни одна щелочь. Даже сильные кислоты, такие как соляная , не подействуют на него. По этой причине из вольфрама изготавливают электроды, используемые при гальванизации и электролизе.

Вольфрам и лампы накаливания

Почему же нить в лампах накаливания делают именно из вольфрама? Все дело в его уникальных физических свойствах. Ключевую роль здесь играет температура плавления, которая составляет около 3500 градусов Цельсия. Это на порядок выше, чем у многих металлов, часто используемых в промышленности. Например, алюминий плавится при 660 градусах.

Электрический ток, проходя через нить накаливания, нагревает ее до 3000 градусов. Выделяется большое количество тепловой энергии, которая бесполезно расходуется в окружающее пространство. Из всех известных науке металлов только вольфрам способен выдержать столь высокую температуру и не расплавиться, в отличие от того же алюминия. Неприхотливость вольфрама позволяет служить лампочкам в домах довольно долго. Однако, по прошествии некоторого времени нить рвется, и лампа выходит из строя. Почему так происходит? Все дело в том, что под воздействием очень высокой температуры при прохождении тока (около 3000 градусов), вольфрам начинает испаряться. Тонкая нить лампы со временем становится еще тоньше, пока не порвется.

Чтобы расплавить образец вольфрама используют электронно-лучевую или аргонную плавку. С помощью этих методов можно с легкостью нагреть металл до 6000 градусов Цельсия.

Получение вольфрама

Получить качественный образец этого металла довольно трудно, но сегодня ученые с блеском справляются с этой задачей. Было разработано несколько уникальных технологий, позволяющих выращивать монокристаллы вольфрама, огромные вольфрамовые тигли (весом до 6 кг). Последние широко применяются для получения дорогих сплавов.

Видео по теме

Источники:

  • Сайт компании "Урал-Металл"
  • Периодическая таблица элементов

Сегодня лампы накаливания есть в каждом доме. С виду простое устройство лампочки редко вызывает интерес, а между тем, именно она в 20-х годах прошлого века стала отправной точкой для нового витка научно-технического прогресса.

Инструкция

Самая большая и наиболее заметная часть лампы - это колба, изготовленная из стекла. Формы колб бывают различными, но принцип использования один: внутри колбы либо вакуум, либо инертный газ, в центре - тонкая спираль - тело накаливания. Это тугоплавкий проводник, т.е. вещество, которое хорошо пропускает через себя ток. Часто для них используют сплав вольфрама.

Тело накаливания бывает не только в виде спиральной нити, но и в виде ленты, к концам которой прикреплены электроды, уходящие в цоколь.

Цоколь - круглый сосуд из тонкой хромированной или оцинкованной стали, в который как бы вставляется колба. Для закрепления лампы в патроне на цоколе обычно делают резьбу, хотя бывают лампы, которые крепятся внутри светильника либо за счет трения, либо байонетным сопряжением - это метод соединения деталей путем поворота вдоль оси с боковым смещением одной части относительно другой.

Лампа накаливания

Ла́мпа нака́ливания - электрический источник света , в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой температуры за счёт протекания через него электрического тока, в результате чего излучает в широком спектральном диапазоне, в том числе видимый свет. В качестве тела накала в настоящее время используется в основном спираль из сплавов на основе вольфрама .

Принцип действия

В лампе используется эффект нагревания проводника (тела накаливания) при протекании через него электрического тока (тепловое действие тока ). Температура тела накала резко возрастает после включения тока. Тело накала излучает электромагнитное тепловое излучение в соответствии с законом Планка . Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов. При температуре 5770 (температура поверхности Солнца) свет соответствует спектру Солнца. Чем меньше температура, тем меньше доля видимого света, и тем более «красным» кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводимости и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение . Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити - температурой плавления . Температура в 5771 К недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления - вольфрам (3410 °C) и, очень редко, осмий (3045 °C).

Для оценки данного качества света используется цветовая температура . При типичных для ламп накаливания температурах 2200-3000 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (< 3500 K) свет более комфортен и меньше подавляет естественную выработку мелатонина , важного для регуляции суточных циклов организма и нарушение его синтеза негативно сказывается на здоровье.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид . По этой причине тело накала помещено в колбу, из которой в процессе изготовления лампы откачивается воздух. Первые изготавливали вакуумными; в настоящее время только лампы малой мощности (для ламп общего назначения - до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом , аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп резко уменьшает скорость испарения вольфрама, благодаря чему не только увеличивается срок службы лампы, но и есть возможность повысить температуру тела накаливания, что позволяет повысить КПД и приблизить спектр излучения к белому. Колба газонаполненной лампы не так быстро темнеет за счёт осаждения материала тела накала, как у вакуумной лампы.

Конструкция

Конструкция современной лампы. На схеме: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя.

Конструкции ламп накаливания весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель - звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы - как правило, в ножке. Назначение предохранителя - предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга , которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. Из-за малой эффективности в настоящее время отказались от их применения.

Колба

Колба защищает тело накала от воздействия атмосферных газов. Размеры колбы определяются скоростью осаждения материала тела накала.

Газовая среда

Колбы первых ламп были вакуумированы. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа с большой молярной массой. Смеси азота N 2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже - криптон Kr или ксенон Xe (молярные массы : N 2 - 28,0134 /моль ; Ar: 39,948 г/моль; Kr - 83,798 г/моль; Xe - 131,293 г/моль).

Галогенная лампа

Тело накала первых ламп изготавливалось из угля (температура возгонки 3559 °C). В современных лампах применяются почти исключительно спирали из вольфрама , иногда осмиево -вольфрамового сплава . Для уменьшения размеров тела накала ему обычно придаётся форма спирали, иногда спираль подвергают повторной или даже третичной спирализации, получая соответственно биспираль или триспираль. КПД таких ламп выше за счёт уменьшения теплопотерь из-за конвекции (уменьшается толщина ленгмюровского слоя).

Электротехнические параметры

Лампы изготавливают для различных рабочих напряжений . Сила тока определяется по закону Ома (I=U/R ) и мощность по формуле P=U·I , или P=U²/R . Т. к. металлы имеют малое удельное сопротивление , для достижения такого сопротивления необходим длинный и тонкий провод. Толщина провода в обычных лампах составляет 40-50 микрон .

Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении протекает очень большой ток (в десять - четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу - при нагревании их сопротивление уменьшалось, и свечение медленно нарастало. Возрастающая характеристика сопротивления нити накала (при увеличении тока сопротивление растет) позволяет использовать лампу накаливания в качестве примитивного стабилизатора тока . При этом лампа включается в стабилизируемую цепь последовательно, а среднее значение тока выбирается таким, чтобы лампа работала вполнакала.

В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мерцающем режиме.

Цоколь

В США и Канаде используются иные цоколи (это частично обусловлено иным напряжением в сетях - 110 В, поэтому иные размеры цоколей предотвращают случайное ввинчивание европейских ламп, рассчитанных на иное напряжение): Е12 (candelabra), Е17 (intermediate), Е26 (standard или medium), Е39 (mogul) . Также, аналогично Европе, встречаются цоколи без резьбы.

Номенклатура

По функциональному назначению и особенностям конструкции лампы накаливания подразделяют на:

  • лампы общего назначения (до середины 1970-х годов применялся термин «нормально-осветительные лампы»). Самая массовая группа ламп накаливания, предназначенных для целей общего, местного и декоративного освещения. Начиная с 2008 года за счёт принятия рядом государств законодательных мер, направленных на сокращение производства и ограничение применения ламп накаливания с целью энергосбережения, их выпуск стал сокращаться;
  • декоративные лампы , выпускаемые в фигурных колбах. Наиболее массовыми являются свечеобразные колбы диаметром ок. 35 мм и сферические диаметром около 45 мм;
  • лампы местного освещения , конструктивно аналогичные лампам общего назначения, но рассчитанные на низкое (безопасное) рабочее напряжение - 12, 24 или 36 (42) В. Область применения - ручные (переносные) светильники, а также светильники местного освещения в производственных помещениях (на станках, верстаках и т. п., где возможен случайный бой лампы);
  • иллюминационные лампы , выпускаемые в окрашенных колбах. Назначение - иллюминационные установки различных типов. Как правило, лампы этого вида имеют малую мощность (10-25 Вт). Окрашивание колб обычно производится за счёт нанесения на их внутреннюю поверхность слоя неорганического пигмента. Реже используются лампы с колбами, окрашенными снаружи цветными лаками (цветным цапонлаком), их недостаток - быстрое выцветание пигмента и осыпание лаковой плёнки из-за механических воздействий;
  • зеркальные лампы накаливания имеют колбу специальной формы, часть которой покрыта отражающим слоем (тонкая плёнка термически распылённого алюминия). Назначение зеркализации - пространственное перераспределение светового потока лампы с целью наиболее эффективного его использования в пределах заданного телесного угла. Основное назначение зеркальных ЛН - локализованное местное освещение;
  • сигнальные лампы используются в различных светосигнальных приборах (средствах визуального отображения информации). Это лампы малой мощности, рассчитанные на длительный срок службы. Сегодня вытесняются светодиодами;
  • транспортные лампы - чрезвычайно широкая группа ламп, предназначенных для работы на различных транспортных средствах (автомобилях, мотоциклах и тракторах, самолётах и вертолётах, локомотивах и вагонах железных дорог и метрополитенов, речных и морских судах). Характерные особенности: высокая механическая прочность, вибростойкость, использование специальных цоколей, позволяющих быстро заменять лампы в стеснённых условия и, в то же время, предотвращающих самопроизвольное выпадение ламп из патронов. Рассчитаны на питание от бортовой электрической сети транспортных средств (6-220 В);
  • прожекторные лампы обычно имеют большую мощность (до 10 кВт, ранее выпускались лампы до 50 кВт) и высокую световую отдачу. Используются в световых приборах различного назначения (осветительных и светосигнальных). Спираль накала такой лампы обычно уложена за счет особой конструкции и подвески в колбе более компактно для лучшей фокусировки;
  • лампы для оптических приборов , к числу которых относятся и выпускавшиеся массово до конца XX в. лампы для кинопроекционной техники, имеют компактно уложенные спирали, многие помещаются в колбы специальной формы. Используются в различных приборах (измерительные приборы, медицинская техника и т. п.);

Специальные лампы

Коммутаторная лампа накаливания (24В 35мА)

История изобретения

Лампа Лодыгина

Лампа Томаса Эдисона с нитью накала из угольного волокна.

  • В 1809 году англичанин Деларю строит первую лампу накаливания (с платиновой спиралью) .
  • В 1838 году бельгиец Жобар изобретает угольную лампу накаливания.
  • В 1854 году немец Генрих Гёбель разработал первую «современную» лампу: обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой.
  • В 1860 год английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно.
  • 11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.
  • В 1875 году В. Ф. Дидрихсон усовершенствовал лампу Лодыгина, осуществив откачку воздуха из неё и применив в лампе несколько волосков (в случае перегорания одного из них, следующий включался автоматически).
  • Английский изобретатель Джозеф Уилсон Суон получил в 1878 году британский патент на лампу с угольным волокном. В его лампах волокно находилось в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.
  • Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу, в которой он пробует в качестве нити различные металлы. В 1879 году он патентует лампу с платиновой нитью. В 1880 году он возвращается к угольному волокну и создаёт лампу с временем жизни 40 часов. Одновременно Эдисон изобрёл бытовой поворотный выключатель . Несмотря на столь непродолжительное время жизни его лампы вытесняют использовавшееся до тех пор газовое освещение.
  • В 1890-х годах А. Н. Лодыгин изобретает несколько типов ламп с нитями накала из тугоплавких металлов . Лодыгин предложил применять в лампах нити из вольфрама (именно такие применяются во всех современных лампах) и молибдена и закручивать нить накаливания в форме спирали. Он предпринял первые попытки откачивать из ламп воздух, что сохраняло нить от окисления и увеличивало их срок службы во много раз . Первая американская коммерческая лампа с вольфрамовой спиралью впоследствии производилась по патенту Лодыгина. Также им были изготовлены и газонаполненные лампы (с угольной нитью и заполнением азотом) .
  • С конца 1890-х годов появились лампы с нитью накаливания из окиси магния, тория, циркония и иттрия (лампа Нернста) или нить из металлического осмия (лампа Ауэра) и тантала (лампа Больтона и Фейерлейна)
  • В 1904 году венгры Д-р Шандор Юст и Франьо Ханаман получили патент за № 34541 на использование в лампах вольфрамовой нити. В Венгрии же были произведены первые такие лампы, вышедшие на рынок через венгерскую фирму Tungsram в 1905 году .
  • В 1906 году Лодыгин продаёт патент на вольфрамовую нить компании General Electric . В том же 1906 году в США он построил и пустил в ход завод по электрохимическому получению вольфрама, хрома, титана. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.
  • В 1910 году Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.
  • Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным, известным специалистом в области вакуумной техники Ирвингом Ленгмюром , который, работая с 1909 года в фирме «General Electric», ввёл в производство наполнение колбы ламп инертными , точнее - тяжёлыми благородными газами (в частности - аргоном), что существенно увеличило время их работы и повысило светоотдачу.

КПД и долговечность

Долговечность и яркость в зависимости от рабочего напряжения

Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 своего максимального значения 15 %. При практически достижимых температурах в 2700 (обычная лампа на 60 Вт) КПД составляет 5 %.

С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 время жизни лампы составляет примерно 1000 часов, при 3400 всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95 %.

Уменьшение напряжения питания хотя и понижает КПД , но зато увеличивает долговечность. Так понижение напряжения в два раза (напр. при последовательном включении) уменьшает КПД примерно в 4-5 раз, но зато увеличивает время жизни почти в тысячу раз. Этим эффектом часто пользуются, когда необходимо обеспечить надёжное дежурное освещение без особых требований к яркости, например, на лестничных площадках. Часто для этого при питании переменным током лампу подключают последовательно с диодом , благодаря чему ток в лампу идет только в течение половины периода.

Так как стоимость потребленной за время службы лампой накаливания электроэнергии в десятки раз превышает стоимость самой лампы, существует оптимальное напряжение, при котором стоимость светового потока минимальна. Оптимальное напряжение несколько выше номинального, поэтому способы повышения долговечности путем понижения напряжения питания с экономической точки зрения абсолютно убыточны.

Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается, и лампа выходит из строя.

Наибольший износ нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода устройства плавного запуска.

Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт , а 100-ваттная - более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной.

Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности, диммеры (автоматические или ручные). Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.

Низковольтные лампы накаливания при той же мощности имеют больший ресурс и светоотдачу благодаря большему сечению тела накаливания. Поэтому в многоламповых светильниках (люстрах) целесообразно применение последовательного включения ламп на меньшее напряжение вместо параллельного включения ламп на напряжение сети. Например, вместо параллельно включенных шести ламп 220В 60Вт применить шесть последовательно включенных ламп 36 В 60Вт, то есть заменить шесть тонких спиралей одной толстой.

Тип Относительная световая отдача Световая отдача (Люмен /Ватт)
Лампа накаливания 40 Вт 1,9 % 12,6
Лампа накаливания 60 Вт 2,1 % 14,5
Лампа накаливания 100 Вт 2,6 % 17,5
Галогенные лампы 2,3 % 16
Галогенные лампы (с кварцевым стеклом) 3,5 % 24
Высокотемпературная лампа накаливания 5,1 % 35
Абсолютно чёрное тело при 4000 K 7,0 % 47,5
Абсолютно чёрное тело при 7000 K 14 % 95
Идеально белый источник света 35,5 % 242,5
Идеальный монохроматический 555 nm (зелёный) источник 100 % 683

Ниже представлено приблизительное соотношение мощности и светового потока для обычных прозрачных ламп накаливания в форме "груши", популярных в России, цоколь E27, 220В.

Разновидности ламп накаливания

Лампы накаливания делятся на (расположены по порядку возрастания эффективности):

  • Вакуумные (самые простые)
  • Аргоновые (азот-аргоновые)
  • Криптоновые (примерно +10% яркости от аргоновых)
  • Ксеноновые (в 2 раза ярче аргоновых)
  • Галогенные (наполнитель I или Br, в 2,5 раза ярче аргоновых, большой срок службы, не любят недокала, так как не работает галогенный цикл)
  • Галогенные с двумя колбами (более эффективный галогенный цикл за счёт лучшего нагрева внутренней колбы)
  • Ксенон-галогенные (наполнитель Xe + I или Br, наиболее эффективный наполнитель, до 3х раз ярче аргоновых)
  • Ксенон-галогенные с отражателем ИК излучения (так как большая часть излучения лампы приходится на ИК диапазон, то отражение ИК излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей)
  • Накаливания с покрытием преобразующим ИК излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.

Преимущества и недостатки ламп накаливания

Преимущества:

  • налаженность в массовом производстве
  • малая стоимость
  • небольшие размеры
  • отсутствие пускорегулирующей аппаратуры
  • нечувствительность к ионизирующей радиации
  • чисто активное электрическое сопротивление (единичный коэффициент мощности)
  • быстрый выход на рабочий режим
  • невысокая чувствительность к сбоям в питании и скачкам напряжения
  • отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации
  • возможность работы на любом роде тока
  • нечувствительность к полярности напряжения
  • возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)
  • отсутствие мерцания при работе на переменном токе (важно на предприятиях).
  • отсутствие гудения при работе на переменном токе
  • непрерывный спектр излучения
  • приятный и привычный в быту спектр
  • устойчивость к электромагнитному импульсу
  • возможность использования регуляторов яркости
  • не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату

Недостатки:

Ограничения импорта, закупок и производства

В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу во многих странах введён или планируется к вводу запрет на производство, закупку и импорт ламп накаливания с целью вынуждения замены их на энергосберегающие (компактные люминесцентные , светодиодные , индукционные и др.) лампы.

В России

По некоторым источникам в 1924 году между участниками картеля была достигнута договорённость об ограничении времени жизни ламп накаливания в 1000 часов. При этом все производители ламп, состоящие в картеле, были обязаны вести строгую техническую документацию по соблюдению мер, предотвращающих 1000-часовое превышение цикла жизни ламп.

Кроме того картелем были разработаны ныне действующие стандарты цоколя Эдисона .

См. также

Примечания

  1. Лампы с белыми LED подавляют выработку мелатонина - Газета.Ru | Наука
  2. Buy Tools, Lighting, Electrical and DataComm Supplies at GoodMart.com
  3. Фотолампа // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. - М .: Советская энциклопедия , 1981.
  4. Е. М. Голдовский. Советская кинотехника. Издательство Академии Наук СССР, Москва-Ленинград. 1950, C. 61
  5. История изобретения и развития электрического освещения
  6. Давид Шарле. Король изобретательства Томас Альва Эдисон
  7. Электротехническая энциклопедия. История изобретения и развития электрического освещения
  8. A. de Lodyguine, U.S. Patent 575,002 «Illuminant for Incandescent Lamps». Application on January 4, 1893 .
  9. Г.С.Ландсберг. Элементарный учебник физики (рус.) . Архивировано из первоисточника 1 июня 2012. Проверено 15 апреля 2011.
  10. en:Incandescent light bulb
  11. [ Лампа накаливания] - статья из Малого энциклопедического словаря Брокгауза и Ефрона
  12. The History of Tungsram (PDF). Архивировано (англ.)
  13. Ganz and Tungsram - the 20th century (англ.) .(недоступная ссылка - история ) Проверено 4 октября 2009.
  14. А. Д. Смирнов, К. М. Антипов. Справочная книга энергетика. Москва, "Энергоатомиздат", 1987.
  15. Keefe, T.J. The Nature of Light (2007). Архивировано из первоисточника 1 июня 2012. Проверено 5 ноября 2007.
  16. Klipstein, Donald L. The Great Internet Light Bulb Book, Part I (1996). Архивировано из первоисточника 1 июня 2012. Проверено 16 апреля 2006.
  17. Black body visible spectrum
  18. See luminosity function.
  19. Лампы накаливания, характеристики . Архивировано из первоисточника 1 июня 2012.
  20. Таубкин С. И. Пожар и взрыв, особенности их экспертизы - М., 1999 с. 104
  21. 1 сентября в ЕС прекратится продажа 75-ваттных ламп накаливания.
  22. ЕС ограничивает продажу ламп накаливания с 1 сентября, европейцы недовольны. «Интерфакс-Украина».
  23. Медведев предложил запретить «лампочки Ильича» , Lenta.ru, 02.07.2009.
  24. Федеральный закон Российской Федерации от 23 ноября 2009 года № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации».
  25. Саботируй вето, Lenta.ru, 28.01.2011.
  26. «Лисма» приступила к выпуску новой серии ламп накаливания, ГУП РМ «ЛИСМА».
  27. Голь на выдумки хитра: в продаже появились лампы накаливания мощностью 95Вт, ЭнергоВОПРОС.ру.

Что такое лампа накаливания? Электрическая лампа накаливания это источник света, являющийся очень важным предметом в жизни человека. С помощью нее миллионы людей могут заниматься делами независимо от времени суток. В то же время прибор очень прост в исполнении: свет испускается специальной нитью накала внутри стеклянного сосуда, из которого откачан воздух, а в ряде случаев заменен на специальный газ. Нить накала выполнена из проводника с высокой температурой плавления, что делает возможным нагрев с помощью тока до видимого свечения.

Лампа накаливания общего назначения (230 В, 60 Вт, 720 лм, цоколь E27, габаритная высота ок. 110 мм

Как работает лампа накаливания

Метод работы данного устройства так же прост, как и исполнение. Под воздействием электричества, пропускаемого сквозь тугоплавкий проводник, последний разогревается до большой температуры. Температура нагрева определяется подводимым к лампочке напряжением.

Следуя закону Планка нагретый проводник генерирует электромагнитное излучение. По формуле при смене температуры меняется и максимум излучения. Чем больше нагрев, тем короче длина волны испускаемого света. Другими словами, от величины температуры проводника накала в лампочке зависит цвет свечения. Длина волны видного спектра достигается при нескольких тысячах градусов по Кельвину. К слову, температура Солнца около 5000 Кельвин. Лампа с такой цветовой температурой будет светить дневным нейтральным светом. При уменьшении нагрева проводника излучение станет желтеть, затем краснеть.

В лампочке только доля энергии переходит в видный свет, остальная же преобразуется в тепло. Причем только часть светового излучения видна человеку, остальное же излучение является инфракрасным. Отсюда возникает потребность повышения температуры излучающего проводника, чтобы видимого света стало больше, а инфракрасного излучения – меньше (другими словами, увеличение КПД лампы накаливания). Но максимальная температура проводника накаливания ограничена характеристиками проводника, что не позволяет разогреть ее до 5770 Кельвин.

Проводник из любого вещества при этом будет расплавляться, деформироваться или перестанет проводить ток. В настоящее время лампочки оснащаются вольфрамовыми нитями накаливания, выдерживающими 3410 градусов по Цельсию.
Одним из главных свойств лампы накаливания является температура свечения. Чаще всего она составляет от 2200 до 3000 Кельвин, что позволяет испускать только желтый свет, а не дневной белый.
Следует заметить, что на воздухе проводник из вольфрама при такой температуре сразу перейдет в оксид, во избежание чего нужно предотвратить контакт с кислородом. Для этого из колбы лампочки выкачивается воздух, чего хватает для создания 25-ваттных ламп. Более мощные лампочки содержат внутри себя инертный газ под давлением, что позволяет вольфраму служить дольше. Данная технология позволяет немного повысить температуру свечения лампы и приблизиться к дневному свету.

Устройство лампочки накаливания

Электрические лампочки немного различаются по конструкции, но к основным составляющим относятся нить излучающего проводника, стеклянный сосуд и выводы. У ламп специального назначения может не иметься цоколь, присутствовать иные держатели излучающего проводника, еще одна колба. В некоторых лампах накаливания также имеется предохранитель из ферроникеля, стоящий в разрыве одного из выводов.

Размещается предохранитель преимущественно в ножке. Благодаря ему колба не разрушается при обрыве излучающего проводника. При обрыве нити лампы появляется электрическая дуга, плавящая останки проводника. Расплавленное вещество проводника, попадая на стеклянную колбу, способно ее разрушить и спровоцировать возгорание. Предохранитель же разрушается от большого тока электрической дуги и прекращает плавление нити накала. Но ставить такие предохранители не стали ввиду малой эффективности.

Конструкция лампы накаливания: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя.

Колба

Стеклянная колба лампы накаливания защищает излучающий проводник от окисления и разрушения. Размер колбы зависит от скорости осаждения материала проводника.

Газовая среда

Первые электрические лампочки выпускались с вакуумной колбой, в наше время так изготовлены только маломощные приборы. Лампы помощнее выпускаются наполненными инертным газом. От величины газовой молярной массы зависит излучение тепла проводником накаливания. Чаще всего в колбах находится смесь газов аргона и азота, но может быть и просто аргон, а также криптон и даже ксенон.

Молярные массы газов:

  • N2 - 28,0134 г/моль;
  • Ar: 39,948 г/моль;
  • Kr - 83,798 г/моль;
  • Xe - 131,293 г/моль;

Отдельно стоит рассмотреть галогенные лампы. В их сосуды закачиваются галогены. Вещество проводника накаливания испаряется и вступает в реакцию с галогенами. Получившиеся соединения при большой температуре вновь разлагаются и вещество возвращается на излучающий проводник. Это свойство позволяет увеличить температуру проводника, вследствие чего возрастает КПД и длительность работы лампы. Помимо этого, использование галогенов позволяет уменьшить размер колбы. Из минусов стоит отметить маленькое сопротивление проводника накала на старте.

Нить накала

Формы излучающего проводника бывают разные, в зависимости от специфики лампочки. Чаще всего в лампочках используется нить круглого сечения, но иногда может встретиться и ленточный проводник.
Первые лампочки выпускались даже с углем, нагревающимся до 3559 градусов по Цельсию. Современные лампочки комплектуются вольфрамовым проводником, иногда – осмиево-фольфрамовым. Вид спирали неслучаен – он существенно снижает габариты проводника накала. Существуют биспирали и триспирали, полученные методом повторного закручивания. Данные типы проводника делают возможным увеличение КПД лампы накаливания за счет уменьшения теплоизлучения.

Свойства лампочки накаливания

Лампочки выпускаются для различных целей и мест установок, чем обусловлено их различие по напряжению цепи. Величина силы тока высчитывается по закону известного Ома (напряжение делим на сопротивление), а мощность с помощью несложной формулы: напряжение умножаем на ток или напряжение в квадрате делим на сопротивление. Для изготовления лампочки накаливания нужной мощности подбирается провод с необходимым сопротивлением. Обычно используется проводник толщиной 40-50 мкм.
При старте, то есть включении лампочки в сеть, происходит бросок тока (на порядок больше номинального). Это получается за счет низкой температуры нити накала. Ведь при комнатной температуре проводник имеет небольшое сопротивление. Ток снижается до номинального только при нагреве нити накала за счет увеличения сопротивления проводника. Что касается первых угольных ламп, то там было наоборот: холодная лампочка имела большее сопротивление, чем горячая.

Цоколь

Цоколь лампы накаливания имеет стандартизированные форму и размер. Благодаря этому возможна замена лампочки в люстре или другом приборе без проблем. Наиболее популярны цоколи лампочек с резьбой, имеющие маркировки E14, E27, E40. Цифры после буквы «Е» обозначает внешний диаметр цоколя. Существуют и цоколи лампочек без резьбы, удерживаемые в патроне силой трения или другими приспособлениями. Лампочки с цоколями Е14 чаще требуются при замене старых в люстрах или торшерах. Цоколь Е27 используется повсеместно – в патронах, люстрах, специальных приборах.
Обратите внимание, что в Америке напряжение цепи 110 вольт, поэтому они пользуются цоколями, отличными от европейских. В американских магазинах найдутся лампочки с цоколями Е12, Е17, Е26 и Е39. Сделано это затем, чтобы случайно не спутать европейскую лампочку, рассчитанную на 220 вольт и американскую на 110 вольт.

Коэффициент полезного действия

Энергия, подводимая к лампочке накаливания тратится не только на производство видного спектра света. Часть энергии тратится на испускание света, часть превращается в тепло, но самая большая доля тратится на инфракрасный свет, недоступный человеческому глазу. При температуре проводника накаливания 3350 Кельвин КПД лампочки всего 15%. А стандартная 60-ваттная лампа с температурой свечения 2700 Кельвин имеет КПД около 5%.
Естественно, КПД лампы накаливания прямо зависит от степени нагрева излучающего проводника, но при более сильном нагреве нить не прослужит долго. При температуре проводника в 2700К лампочка будет светить около 1000 часов, а при нагреве до 3400К срок службы сокращается до нескольких часов. При поднятии напряжения питания лампы на 20% сила свечения увеличится примерно до 2 раз, а срок работы уменьшится аж до 95%.
Для повышения срока работы лампочки следует понизить напряжение питания, но с этим понизится и КПД прибора. При последовательном подключении лампочки накаливания будут работать до 1000 раз дольше, но их КПД окажется в 4-5 раз меньше. В некоторых случаях такой подход имеет смысл, к примеру, на лестничных пролетах. Большая яркость там не обязательна, а вот срок службы лампочек должен быть немалым.
Для достижения данной цели последовательно с лампочкой нужно включить диод. Полупроводниковый элемент позволит отсечь ток половины периода, протекающий по лампе. В результате мощность снижается наполовину, а за ней и напряжение снижается примерно в 1,5 раза.
Однако, такой способ подключения лампы накаливания невыгоден со стороны экономики. Ведь такая цепь будет потреблять больше электроэнергии, что делает выгоднее замену сгоревшей лампочки новой, нежели потраченные киловатт-часы на продление жизни старой. Поэтому для запитки лампочек накаливания подается напряжение, немного побольше номинального, что позволяет экономить электроэнергию.

Сколько служит лампа

Длительность эксплуатации лампы снижается многими факторами, например, испарением вещества с поверхности проводника или дефектами проводника накала. При разном испарении материала проводника появляются участки нити с большим сопротивлением, обуславливающим перегрев и еще интенсивнее испарение вещества. Нить накала под действием такого фактора истончается и местно целиком испаряется, чем обуславливается сгорание лампы.
Сильнее всего проводник накала изнашивается при запуске из-за броска тока. Во избежание этого применяются приборы плавного запуска лампы.
Вольфрам характеризуется удельным сопротивлением вещества в 2 раза большим, чем, например, алюминий. При подсоединении лампы в сеть ток, протекающий по ней, на порядок больше номинального. Броски тока и являются причиной перегорания лампочек накаливания. Для защиты цепи от бросков тока в лампочках иногда стоит предохранитель.

При внимательном рассмотрении электрической лампочки плавкий предохранитель виден более тонким проводником, идущим к цоколю. При включении в сеть обычной электрической 60-ваттной лампочки мощность нити накала может достигать 700 ватт и выше, а при включении 100-ваттной – более 1 киловатта. При нагреве излучающий проводник увеличивает сопротивление и мощность уменьшается до нормы.

Чтобы обеспечить плавный запуск лампы накаливания, можно воспользоваться терморезистором. Коэффициент температурного сопротивления такого резистора должен быть отрицателен. При включении в цепь терморезистор холодный и обладает большим сопротивлением, поэтому лампочка не получит полное напряжение до прогрева данного элемента. Это только основы, тема плавного подлючения лампочек накаливания огромная и требует более глубокого изучения.

Тип Относительная световая отдача % Световая отдача (Люмен/Ватт)
Лампа накаливания 40 Вт 1,9 % 12,6
Лампа накаливания 60 Вт 2,1 % 14,5
Лампа накаливания 100 Вт 2,6 % 17,5
Галогенные лампы 2,3 % 16
Галогенные лампы (с кварцевым стеклом) 3,5 % 24
Высокотемпературная лампа накаливания 5,1 % 35
Абсолютно чёрное тело при 4000 K 7,0 % 47,5
Абсолютно чёрное тело при 7000 K 14 % 95
Идеально белый источник света 35,5 % 242,5
Источник монохроматического зелёного света с длиной волны 555 нм 100 % 683

Благодаря таблице, которая приведена ниже, можно приблизительно узнать соотношение мощности и светового потока для обычной лампочки «груши» (цоколь E27, 220 В).

Мощность (Вт) Световой поток (лм) Световая отдача (лм/Вт)
200 3100 15,5
150 2200 14,6
100 1200 13,6
75 940 12,5
60 720 12
40 420 10,5
25 230 9,2
15 90 6

Какие бывают лампочки накаливания

Как упоминалось выше, из сосуда лампы накаливания откачан воздух. В некоторых случаях (например, при маленькой мощности) колбу так и оставляют вакуумной. Но гораздо чаще лампа наполнена специальным газом, который продляет длительность работы нити накаливания и улучшает светоотдачу проводника.
По типу заполнения сосуда лампочки делят на несколько видов:
Вакуумные (все первые лампочки и маломощные современные)
Аргоновые (в ряде случаев заполняются смесью аргон+азот)
Криптоновые (данный тип лампочек на 10% сильнее светит, чем вышеупомянутые лампы с газом аргоном)
Ксеноновые (в таком исполнении лампы светят уже в 2 раза сильнее, чем лампы с аргоном)
Галогеновые (в сосуды таких лампочек помещают йод, возможно, бром, позволяющие светить аж в 2,5 раза сильнее все тех же аргоновых. Данный тип лампочек является долговечным, но требует хорошего накала нити для работы цикла галогенов)
Ксенон-галогенные (такие лампы наполняют смесью ксенона с йодом или бромом, считающимся лучшим газом для лампочек, потому что светит такой источник в 3 раза ярче стандартной аргоновой лампы)
Ксенон-галогеновые с ИК отражателем (огромная доля свечения лампочек накаливания находится в ИК секторе. Отражая его обратно, можно существенно увеличить КПД лампы)
Лампы с проводником накаливания с преобразователем ИК излучения (на стекло колбы наносится спецлюминофор, излучающий при разогреве видный свет)

Плюсы и минусы ламп накаливания

Как и у прочих электроприборов, у лампочек существует масса плюсов с минусами. Именно поэтому часть людей пользуются данными источниками света, а другая часть сделала выбор в пользу более современных осветительных приборов.

Плюсы:

Хорошая цветопередача;
Масштабное налаженное производство;
Низкая стоимость изделия;
Небольшие размеры;
Простота исполнения без лишних узлов;
Стойкость к радиации;
Имеет только активное сопротивление;
Мгновенный пуск и перезапуск;
Стойкость к перепадам напряжения и сбоям в сети;
В составе нет химически вредных веществ;
Работа как от переменного, так и от постоянного тока;
Отсутствие полярности входов;
Возможно производство под любое напряжение;
Не мерцает от переменного тока;
Не гудит от переменного тока;
Полный световой спектр;
Привычный и удобный цвет свечения;
Стойкость к импульсам электромагнитного поля;
Возможно подключение регулировки яркости;
Свечение при заниженных и завышенных температурах, стойкость к образованию конденсата.

Минусы:

  • Заниженный световой поток;
    Короткая длительность работы;
    Чувствительность к дрожанию и ударам;
    Большой скачок тока при пуске (на порядок выше номинального);
    При разрыве проводника накала возможно разрушение колбы;
    Срок работы и поток света зависит от напряжения;
    Пожароопасность (полчаса свечения лампы накаливания разогревает ее стекло в зависимости от величины мощности: 25вт до 100 градусов по Цельсию, 40вт до 145 градусов, 100вт до 290 градусов, 200вт до 330 градусов. При контакте с тканью нагрев становится более интенсивным. 60- ваттная лампочка может, например, поджечь солому через час работы.);
    Необходимость термостойких патронов и крепежей лампы;
    Маленький КПД лампы накаливания(соотношение силы видимого излучения к объему потребляемой электроэнергии);
    Несомненно, главным плюсом лампы накаливания становится ее низкая стоимость. С распространением люминесцентных и, тем более, светодиодных лампочек ее популярность существенно снизилась.

Вот Вы и узнали что такое лампа накаливания, а знаете ли Вы как они создаются? Нет? Тогда вот вам ознакомительное видео от Discovery

И помните лампочка, засунутая в рот, назад не вылезет, поэтому не стоит этого делать. 🙂

Разбирая строение лампы накаливания (рисунок 1, а ) мы обнаруживаем, что основной частью ее конструкции является тело накала 3 , которое под действием электрического тока накаливается вплоть до появления оптического излучения. На этом собственно и основан принцип действия лампы. Крепление тела накала внутри лампы осуществляется при помощи электродов 6 , обычно удерживающих его концы. Через электроды также осуществляется подвод электрического тока к телу накала, то есть они являются еще внутренними звеньями выводов. При недостаточной устойчивости тела накала, используют дополнительные держатели 4 . Держатели посредством впайки устанавливают на стеклянном стержне 5 , именуемым штабиком, который имеет утолщение на конце. Штабик сопряжен со сложной стеклянной деталью – ножкой. Ножка, она изображена на рисунке 1, б , состоит из электродов 6 , тарелочки 9 , и штенгеля 10 , представляющего собой полую трубочку через которую откачивается воздух из колбы лампы. Общее соединение между собой промежуточных выводов 8 , штабика, тарелочки и штенгеля образует лопатку 7 . Соединение производится путем расплавления стеклянных деталей, в процессе чего проделывается откачное отверстие 14 соединяющее внутреннюю полость откачной трубки с внутренней полостью колбы лампы. Для подвода электрического тока к нити накала через электроды 6 применяют промежуточные 8 и внешние выводы 11 , соединяемые между собой электросваркой.

Рисунок 1. Устройство электрической лампы накаливания (а ) и ее ножки (б )

Для изоляции тела накала, а также других частей лампочки от внешней среды, применяется стеклянная колба 1 . Воздух из внутренней полости колбы откачивается, а вместо него закачивается инертный газ или смесь газов 2 , после чего конец штенгеля нагревается и запаивается.

Для подвода к лампе электрического тока и ее крепления в электрическом патроне лампа оборудуется цоколем 13 , крепление которого к горлу колбы 1 осуществляется при помощи цоколевочной мастики. На соответствующие места цоколя припаивают выводы лампы 12 .

От того как расположено тело накала и какой оно формы зависит светораспределение лампы. Но касается это только ламп с прозрачными колбами. Если представить, что нить накала представляет собой равнояркий цилиндр и спроецировать исходящий от нее свет на плоскость перпендикулярную наибольшей поверхности светящей нити или спирали, то на ней окажется максимальная сила света. Поэтому для создания нужных направлений сил света, в различных конструкциях ламп, нитям накала придают определенную форму. Примеры форм нитей накала приведены на рисунке 2. Прямая неспирализированная нить в современных лампах накаливания почти не применяется. Связано это с тем, что с увеличением диаметра тела накала уменьшаются потери тепла через газ наполняющий лампу.

Рисунок 2. Конструкция тела накала:
а - высоковольтной проекционной лампы; б - низковольтной проекционной лампы; в - обеспечивающая получение равнояркого диска

Большое количество тел накала подразделяют на две группы. Первая группа включает в себя тела накала, применяемые в лампах общего назначения, конструкция которых изначально задумывалась как источник излучения с равномерным распределением силы света. Целью конструирования таких ламп является получение максимальной световой отдачи, что достигается путем уменьшения числа держателей, через которые происходит охлаждение нити. Ко второй группе относят так называемые плоские тела накала, которые выполняют либо в виде параллельно расположенных спиралей (в мощных высоковольтных лампах), либо в виде плоских спиралей (в маломощных лампах низкого напряжения). Первая конструкция выполняется с большим числом молибденовых держателей, которые крепятся специальными керамическими мостиками. Длинная нить накала размещается в виде корзиночки, тем самым достигается большая габаритная яркость. В лампах накаливания, предназначенных для оптических систем, тела накала должны быть компактными. Для этого тело накала свертывают в дужку, двойную или тройную спираль. На рисунке 3 приведены кривые силы света, создаваемые телами накала различных конструкций.

Рисунок 3. Кривые силы света ламп накаливания с различными телами накала:
а - в плоскости, перпендикулярной оси лампы; б - в плоскости, проходящей через ось лампы; 1 - кольцевая спираль; 2 - прямая биспираль; 3 - спираль, расположенная по поверхности цилиндра

Требуемые кривые силы света ламп накаливания можно получить применением специальных колб с отражающими или рассеивающими покрытиями. Использование отражающих покрытий на колбе соответствующей формы позволяет иметь значительное разнообразие кривых силы света. Лампы с отражающими покрытиями называют зеркальными (рисунок 4). При необходимости обеспечить особо точное светораспределение в зеркальных лампах применяют колбы, изготовленные методом прессования. Такие лампы называются лампами-фарами. В некоторых конструкциях ламп накаливания имеются встроенные в колбы металлические отражатели.

Рисунок 4. Зеркальные лампы накаливания

Применяемые в лампах накаливания материалы

Металлы

Основным элементом ламп накаливания является тело накала. Для изготовления тела накала наиболее целесообразно применять металлы и другие материалы с электронной проводимостью. При этом пропусканием электрического тока тело будет накаливаться до требуемой температуры. Материал тела накала должен удовлетворять ряду требований: иметь высокую температуру плавления, пластичность, позволяющую тянуть проволоку различного диаметра, в том числе весьма малого, низкую скорость испарения при рабочих температурах, обуславливающую получение высокого срока службы, и тому подобных. В таблице 1 приведены температуры плавления тугоплавких металлов. Наиболее тугоплавким металлом является вольфрам, что наряду с высокой пластичностью и низкой скоростью испарения обеспечило его широкое использование в качестве тела накала ламп накаливания.

Таблица 1

Температура плавления металлов и их соединений

Металлы T , °С Карбиды и их смеси T , °С Нитриды T , °С Бориды T , °С
Вольфрам
Рений
Тантал
Осмий
Молибден
Ниобий
Иридий
Цирконий
Платина
3410
3180
3014
3050
2620
2470
2410
1825
1769
4TaC +
+ HiC
4TaC +
+ ZrC
HfC
TaC
ZrC
NbC
TiC
WC
W2C
MoC
VnC
ScC
SiC
3927

3887
3877
3527
3427
3127
2867
2857
2687
2557
2377
2267

TaC +
+ TaN
HfN
TiC +
+ TiN
TaN
ZrN
TiN
BN
3373

3087
2977
2927
2727

HfB
ZrB
WB
3067
2987
2927

Скорость испарения вольфрама при температурах 2870 и 3270°С составляет 8,41×10 -10 и 9,95×10 -8 кг/(см²×с).

Из других материалов перспективным можно считать рений, температура плавления которого немного ниже, чем у вольфрама. Рений хорошо поддается механической обработке в нагретом состоянии, стоек к окислению, имеет меньшую скорость испарения, чем вольфрам. Имеются зарубежные публикации о получении ламп с вольфрамовой нитью с добавками рения, а также покрытия нити слоем рения. Из неметаллических соединений интерес представляет карбид тантала, скорость испарения которого на 20 - 30% ниже, чем у вольфрама. Препятствием к использованию карбидов, в частности карбида тантала, является их хрупкость.

В таблице 2 приведены основные физические свойства идеального тела накала, изготовленного из вольфрама.

Таблица 2

Основные физические свойства вольфрамовой нити

Температура, К Скорость испарения, кг/(м²×с) Удельное электрическое сопротивление, 10 -6 Ом×см Яркость кд/м² Световая отдача, лм/Вт Цветовая температура, К
1000
1400
1800
2200
2600
3000
3400
5,32 × 10 -35
2,51 × 10 -23
8,81 × 10 -17
1,24 × 10 -12
8,41 × 10 -10
9,95 × 10 -8
3,47 × 10 -6
24,93
37,19
50,05
63,48
77,49
92,04
107,02
0,0012
1,04
51,2
640
3640
13260
36000
0,0007
0,09
1,19
5,52
14,34
27,25
43,20
1005
1418
1823
2238
2660
3092
3522

Важным свойством вольфрама является возможность получения его сплавов. Детали из них сохраняют устойчивую форму при высокой температуре. При нагреве вольфрамовой проволоки, в процессе термической обработки тела накала и последующих нагревах происходит изменение ее внутренней структуры, называемое термической рекристаллизацией. В зависимости от характера рекристаллизации тело накала может иметь большую или меньшую формоустойчивость. Влияние на характер рекристаллизации оказывают примеси и присадки, добавляемые в вольфрам в процессе его изготовления.

Добавка к вольфраму окиси тория ThO 2 замедляет процесс его рекристаллизации и обеспечивает мелкокристаллическую структуру. Такой вольфрам является прочным при механических сотрясениях, однако он сильно провисает и поэтому не пригоден для изготовления тел накала в виде спиралей. Вольфрам с повышенным содержанием окиси тория используется для изготовления катодов газоразрядных ламп из-за его высокой эмиссионной способности.

Для изготовления спиралей применяют вольфрам с присадкой оксида кремния SiO 2 вместе со щелочными металлами - калием и натрием, а также вольфрам, содержащий, кроме указанных, присадку оксида алюминия Al 2 O 3 . Последний дает наилучшие результаты при изготовлении биспиралей.

Электроды большинства ламп накаливания выполняют из чистого никеля. Выбор обусловлен хорошими вакуумными свойствами этого металла, выделяющего сорбированные в нем газы, высокими токопроводящими свойствами и свариваемостью с вольфрамом и другими материалами. Ковкость никеля позволяет заменять сварку с вольфрамом обжатием, обеспечивающим хорошую электро- и теплопроводность. В вакуумных лампах накаливания вместо никеля используют медь.

Держатели изготавливают как правило, из молибденовой проволоки, сохраняющей упругость при высокой температуре. Это позволяет поддерживать тело накала в растянутом состоянии даже после его расширения в результате нагрева. Молибден имеет температуру плавления 2890 К и температурный коэффициент линейного расширения (ТКЛР), в интервале от 300 до 800 К равный 55 × 10 -7 К -1 . Из молибдена делают также вводы в тугоплавкие стекла.

Выводы ламп накаливания изготавливают из медной проволоки, которую приваривают торцевой сваркой к вводам. У ламп накаливания малой мощности отдельные выводы отсутствуют, их роль выполняют удлиненные вводы, изготовленные из платинита. Для припаивания выводов к цоколю применяют оловянно-свинцовый припой марки ПОС-40.

Стекла

Штабики, тарелочки, штенгели, колбы и другие стеклянные детали, применяемые в одной и той же лампе накаливания, изготовляют из силикатного стекла с одинаковым температурным коэффициентом линейного расширения, что необходимо для обеспечения герметичности мест сварки этих деталей. Значения температурного коэффициента линейного расширения ламповых стекол должны обеспечивать получение согласованных спаев с металлами, используемыми для изготовления вводов. Наибольшее распространение получило стекло марки СЛ96-1 со значением температурного коэффициента, равным 96 × 10 -7 К -1 . Это стекло может работать при температурах от 200 до 473 К.

Одним из важных параметров стекла является интервал температур, в пределах которого оно сохраняет свариваемость. Для обеспечения свариваемости некоторые детали изготовляют из стекла марки СЛ93-1, отличающегося от стекла марки СЛ96-1 химическим составом и более широким интервалом температур, в котором оно сохраняет свариваемость. Стекло марки СЛ93-1 отличается повышенным содержанием окиси свинца. При необходимости уменьшения размеров колб применяют более тугоплавкие стекла (например, марки СЛ40-1), температурный коэффициент которых составляет 40 × 10 -7 К -1 . Эти стекла могут работать при температурах от 200 до 523 К. Наиболее высокую рабочую температуру имеет кварцевое стекло марки СЛ5-1, лампы накаливания из которого могут работать при 1000 К и более в течение нескольких сотен часов (температурный коэффициент линейного расширения кварцевого стекла 5,4 × 10 -7 К -1). Стекла перечисленных марок прозрачны для оптического излучения в интервале длинн волн от 300 нм до 2,5 - 3 мкм. Пропускание кварцевого стекла начинается от 220 нм.

Вводы

Вводы изготовляют из материала, который наряду с хорошей электропроводностью должен иметь тепловой коэффициент линейного расширения, обеспечивающий получение согласованных спаев с применяемыми для изготовления ламп накаливания стеклами. Согласованными называют спаи материалов, значения теплового коэффициента линейного расширения которых во всем интервале температур, то есть от минимальной до температуры отжига стекла, отличаются не более чем на 10 - 15%. При впае металла в стекло лучше, если тепловой коэффициент линейного расширения металла несколько ниже, чем у стекла. Тогда при остывании впая стекло обжимает металл. При отсутствии металла, обладающего требуемым значением теплового коэффициента линейного расширения, приходится изготовлять не согласованные впаи. В этом случае вакуумно-плотное соединение металла со стеклом во всем диапазоне температур, а также механическая прочность впая обеспечиваются специальной конструкцией.

Согласованный спай со стеклом марки СЛ96-1 получают при использовании платиновых вводов. Дороговизна этого металла привела к необходимости разработки заменителя, получившего название "платинит". Платинит представляет собой проволоку из железоникелевого сплава с температурным коэффициентом линейного расширения меньшим, чем у стекла. При наложении на такую проволоку слоя меди можно получить хорошо проводящую биметаллическую проволоку с большим температурным коэффициентом линейного расширения, зависящим от толщины слоя наложенного слоя меди и теплового коэффициента линейного расширения исходной проволоки. Очевидно, что такой способ согласования температурных коэффициентов линейного расширения позволяет осуществлять согласование в основном по диаметральному расширению, оставляя несогласованным температурный коэффициент продольного расширения. Для обеспечения лучшей вакуумной плотности спаев стекла марки СЛ96-1 с платинитом и усиления смачиваемости поверх слоя меди, окисленного по поверхности до закиси меди, проволока покрывается слоем буры (натриевая соль борной кислоты). Достаточно прочные впаи обеспечиваются при использовании платиновой проволоки диаметром до 0,8 мм.

Вакуумно-плотный впай в стекло СЛ40-1 получают при использовании молибденовой проволоки. Эта пара дает более согласованный впай, чем стекло марки СЛ96-1 с платинитом. Ограниченное применение этого впая связано с дороговизной исходных материалов.

Для получения вакуумно-плотных вводов в кварцевое стекло необходимы металлы с весьма малым тепловым коэффициентом линейного расширения, которых не существует. Поэтому необходимый результат получаю благодаря конструкции ввода. В качестве металла используют молибден, отличающийся хорошей смачиваемостью кварцевым стеклом. Для ламп накаливания в кварцевых колбах применяют простые фольговые вводы.

Газы

Наполнение ламп накаливания газом позволяет повысить рабочую температуру тела накала без уменьшения срока службы из-за снижения скорости распыления вольфрама в газовой среде по сравнению с распылением в вакууме. Скорость распыления снижается с ростом молекулярной массы и давления наполняющего газа. Давление наполняющих газов составляет около 8 × 104 Па. Какой газ для этого использовать?

Использование газовой среды приводит к появлению тепловых потерь из-за теплопроводности через газ и конвекции. Для снижения потерь выгодно заполнять лампы тяжелыми инертными газами или их смесями. К таким газам относятся получаемые из воздуха азот, аргон, криптон и ксенон. В таблице 3 приведены основные параметры инертных газов. Азот в чистом виде не применяют из-за больших потерь, связанных с его относительно высокой теплопроводностью.

Таблица 3

Основные параметры инертных газов